282 research outputs found

    Are restricted and repetitive behaviours in two‐ and six‐year‐olds associated with emotional and behavioural difficulties?

    Get PDF
    Background: Restricted and repetitive patterns of behaviour (RRBs) serve an adaptive role in development. Elevated levels of RRBs beyond the early years, however, are associated with poorer outcome in language, cognition, and wellbeing, and are seen across a range of neurodevelopmental conditions. This study aimed to characterize the association of distinct RRB subtypes at two and six years of age, with internalising and externalising difficulties in a community sample of children. Methods: 485 parents reported on their child's insistence on sameness (IS) and repetitive sensory and motor (RSM) RRBs at two and six years of age using the Repetitive Behaviour Questionnaire (RBQ‐2). Emotional and behavioural difficulties were measured using the Strengths and Difficulties Questionnaire (SDQ) at age six. Results: Consistent with previous research, RRBs later in development better predicted emotional and behavioural difficulties at age six than RRBs earlier in development. Moreover, IS RRBs were selectively associated with internalising behaviours and RSM RRBs with externalising behaviours. Importantly, these selective associations depended on when RRBs were measured. Only IS RRBs at age six were significantly associated with internalising behaviour. By contrast, while more RSM RRBs at age six were associated with higher rates of externalising behaviours, higher rates of RSM RRBs at age two were associated with fewer externalising behaviours, adding further support to the previously reported adaptive role of RRBs in early behaviour regulation. Conclusion: Although there is a need for further research to provide a detailed profile of the adaptive periods for IS and RSM RRBs, the present findings support the potential utility of elevated RRBs as a signal for emotional and behavioural difficulties at age six

    Diminished Superoxide Generation Is Associated With Respiratory Chain Dysfunction and Changes in the Mitochondrial Proteome of Sensory Neurons From Diabetic Rats

    Get PDF
    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.OBJECTIVE Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. RESEARCH DESIGN AND METHODS Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). RESULTS Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. CONCLUSIONS Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.This work was supported by grants from the Juvenile Diabetes Research Foundation (#1-2008-280) and the National Institutes of Health to R.T.D. (grants NS-054847 and DK-073594). E.A. was supported by a grant from the National Science and Engineering Research Council (#3311686-06) to P.F. and subsequently by a postgraduate scholarship from the Manitoba Health Research Council. S.K.R.C. and E.Z. were supported by grants to P.F. from the Canadian Institutes for Health Research (#MOP-84214) and the Juvenile Diabetes Research Foundation (#1-2008-193). D.R.S. was supported by a grant to P.F. from the Manitoba Health Research Council. This work was also funded by the St. Boniface General Hospital and Research Foundation

    Temporal dystrophic remodeling within the intrinsic cardiac nervous system of the streptozotocin-induced diabetic rat model

    Get PDF
    INTRODUCTION: The pathogenesis of heart failure (HF) in diabetic individuals, called “diabetic cardiomyopathy”, is only partially understood. Alterations in the cardiac autonomic nervous system due to oxidative stress have been implicated. The intrinsic cardiac nervous system (ICNS) is an important regulatory pathway of cardiac autonomic function, however, little is known about the alterations that occur in the ICNS in diabetes. We sought to characterize morphologic changes and the role of oxidative stress within the ICNS of diabetic hearts. Cultured ICNS neuronal cells from the hearts of 3- and 6-month old type 1 diabetic streptozotocin (STZ)-induced diabetic Sprague-Dawley rats and age-matched controls were examined. Confocal microscopy analysis for protein gene product 9.5 (PGP 9.5) and amino acid adducts of (E)-4-hydroxy-2-nonenal (4-HNE) using immunofluorescence was undertaken. Cell morphology was then analyzed in a blinded fashion for features of neuronal dystrophy and the presence of 4-HNE adducts. RESULTS: At 3-months, diabetic ICNS neuronal cells exhibited 30% more neurite swellings per area (p = 0.01), and had a higher proportion with dystrophic appearance (88.1% vs. 50.5%; p = <0.0001), as compared to control neurons. At 6-months, diabetic ICNS neurons exhibited more features of dystrophy as compared to controls (74.3% vs. 62.2%; p = 0.0448), with 50% more neurite branching (p = 0.0015) and 50% less neurite outgrowth (p = <0.001). Analysis of 4-HNE adducts in ICNS neurons of 6-month diabetic rats demonstrated twice the amount of reactive oxygen species (ROS) as compared to controls (p = <0.001). CONCLUSION: Neuronal dystrophy occurs in the ICNS neurons of STZ-induced diabetic rats, and accumulates temporally within the disease process. In addition, findings implicate an increase in ROS within the neuronal processes of ICNS neurons of diabetic rats suggesting an association between oxidative stress and the development of dystrophy in cardiac autonomic neurons

    Sensory neurons derived from diabetic rats have diminished internal Ca2+ stores linked to impaired re-uptake by the endoplasmic reticulum

    Get PDF
    Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeo<1?show=[fo]?>stasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes

    Effects of a novel, brief psychological therapy (Managing Unusual Sensory Experiences) for hallucinations in first episode psychosis (MUSE FEP): Findings from an exploratory randomised controlled trial

    Get PDF
    \ua9 2024Hallucinations are a common feature of psychosis, yet access to effective psychological treatment is limited. The Managing Unusual Sensory Experiences for First-Episode-Psychosis (MUSE-FEP) trial aimed to establish the feasibility and acceptability of a brief, hallucination-specific, digitally provided treatment, delivered by a non-specialist workforce for people with psychosis. MUSE uses psychoeducation about the causal mechanisms of hallucinations and tailored interventions to help a person understand and manage their experiences. We undertook a two-site, single-blind (rater) Randomised Controlled Trial and recruited 82 participants who were allocated 1:1 to MUSE and treatment as usual (TAU) (n = 40) or TAU alone (n = 42). Participants completed assessments before and after treatment (2 months), and at follow up (3–4 months). Information on recruitment rates, adherence, and completion of outcome assessments was collected. Analyses focussed on feasibility outcomes and initial estimates of intervention effects to inform a future trial. The trial is registered with the ISRCTN registry 16793301. Criteria for the feasibility of trial methodology and intervention delivery were met. The trial exceeded the recruitment target, had high retention rates (87.8%) at end of treatment, and at follow up (86.6%), with good acceptability of treatment. There were 3 serious adverse events in the therapy group, and 5 in the TAU group. Improvements were evident in both groups at the end of treatment and follow up, with a particular benefit in perceived recovery in the MUSE group. We showed it was feasible to increase access to psychological intervention but a definitive trial requires further changes to the trial design or treatment

    Caveolin-1 and Altered Neuregulin Signaling Contribute to the Pathophysiological Progression of Diabetic Peripheral Neuropathy

    Get PDF
    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.OBJECTIVE Evaluate if Erb B2 activation and the loss of caveolin-1 (Cav1) contribute to the pathophysiological progression of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS Cav1 knockout and wild-type C57BL/6 mice were rendered diabetic with streptozotocin, and changes in motor nerve conduction velocity (MNCV), mechanical and thermal hypoalgesia, Erb B2 phosphorylation (pErb B2), and epidermal nerve fiber density were assessed. The contribution of Erb B2 to DPN was assessed using the Erb B2 inhibitors PKI 166 and erlotinib and a conditional bitransgenic mouse that expressed a constitutively active form of Erb B2 in myelinated Schwann cells (SCs). RESULTS Diabetic mice exhibited decreased MNCV and mechanical and thermal sensitivity, but the extent of these deficits was more severe in diabetic Cav1 knockout mice. Diabetes increased pErb B2 levels in both genotypes, but the absence of Cav1 correlated with a greater increase in pErb B2. Erb B2 activation contributed to the mechanical hypoalgesia and MNCV deficits in both diabetic genotypes because treatment with erlotinib or PKI 166 improved these indexes of DPN. Similarly, induction of a constitutively active Erb B2 in myelinated SCs was sufficient to decrease MNCV and induce a mechanical hypoalgesia in the absence of diabetes. CONCLUSIONS Increased Erb B2 activity contributes to specific indexes of DPN, and Cav1 may be an endogenous regulator of Erb B2 signaling. Altered Erb B2 signaling is a novel mechanism that contributes to SC dysfunction in diabetes, and inhibiting Erb B2 may ameliorate deficits of tactile sensitivity in DPN. Diabetic peripheral neuropathy (DPN) is a common complication of diabetes (1). Although hyperglycemia is the definitive cause of DPN (2), the vascular, glial, and neuronal damage that underlies the progressive axonopathy in DPN has a complex biochemical etiology involving oxidative stress (3,4), protein glycation (5), protein kinase C activation (6), polyol synthesis (7), and the hexosamine pathway (8). Altered neurotrophic support also contributes to sensory neuron dysfunction in DPN (9), but whether diabetes may alter growth factor signaling in Schwann cells (SCs), which also undergo substantial degeneration in diabetes, is poorly defined. Neuregulins are growth factors that control SC growth, survival, and differentiation via their interaction with Erb B receptors (10). Although Erb B2 signaling promotes developmental myelination and is clearly trophic for SCs, pharmacological evidence supports that pathologic activation of Erb B2 after axotomy (11) or infection with leprosy bacilli (12) is sufficient to induce SC dedifferentiation and demyelination. Additionally, genetic evidence supports that Erb B2 can promote the development of sensory neuropathies independent of diabetes because expression of a dominant-negative Erb B4 in nonmyelinating (13) or myelinating (14) SCs induced a temperature or mechanical sensory neuropathy, respectively. Given the contribution of Erb B2 to the degeneration of SCs, endogenous proteins that regulate Erb B2 activity may influence the development of certain aspects of sensory neuropathies. The interaction of Erb B2 with the protein caveolin-1 (Cav1) inhibits the intrinsic tyrosine kinase activity of the receptor (15). Cav1 is highly expressed in mature, myelinated SCs (16), and we have shown that prolonged hyperglycemia promoted the downregulation of Cav1 in SCs of sciatic nerve (17). Cav1 may regulate Erb B2 signaling in SCs because its forced downregulation was sufficient to enhance neuregulin-induced demyelination of SC–dorsal root ganglion (DRG) neuron cocultures (18). However, it is unknown whether an increase in Erb B2 activity may contribute to the pathophysiological development of DPN and if changes in Cav1 expression may alter Erb B2 activation in diabetic nerve. In the current study, we demonstrate that diabetic Cav1 knockout mice showed an increased activation of Erb B2 and developed greater motor nerve conduction velocity (MNCV) deficits relative to their wild-type counterparts. Inhibition of Erb B2 with two structurally diverse inhibitors corrected the MNCV deficits and mechanical hypoalgesia evident after 6 or 15 weeks of diabetes. Also, induction of a constitutively active Erb B2 in myelinated SCs of adult mice was sufficient to recapitulate the MNCV and mechanical sensitivity deficits observed in the diabetic mice. These studies provide the first evidence that activation of Erb B2 contributes to deficits associated with myelinated fiber function in diabetic nerve and suggest that Cav1 may serve as an endogenous regulator of Erb B2.This work was supported by grants from the Juvenile Diabetes Research Foundation and the National Institutes of Health (NS-054847 and DK-073594)

    End-group ionisation enables the use of poly(N-(2-methacryloyloxy)ethyl pyrrolidone) as an electrosteric stabiliser block for polymerisation-induced self-assembly in aqueous media

    Get PDF
    A series of near-monodisperse poly(N-2-(methacryloyloxy)ethyl pyrrolidone) (PNMEP) homopolymers was prepared via reversible addition-fragmentation chain transfer (RAFT) solution polymerisation of NMEP in ethanol at 70 °C using a carboxylic acid-functional RAFT agent. The mean degree of polymerisation (DP) was varied from 19 to 89 and acid titration indicated end-group pK a values of 5.07-5.44. Turbidimetry studies indicated that homopolymer cloud points were significantly higher at pH 7 (anionic carboxylate) than at pH 3 (neutral carboxylic acid). Moreover, this enhanced hydrophilic character enabled PNMEP to be used as a steric stabiliser for aqueous polymerisation-induced self-assembly (PISA) syntheses. Thus, a PNMEP 42 precursor was chain-extended via RAFT aqueous dispersion polymerisation of 2-hydroxypropyl methacrylate (HPMA) at 44 °C. A series of PNMEP 42 -PHPMA x diblock copolymers were synthesised using this protocol, with target PHPMA DPs of 150 to 400. High conversions were achieved and a linear evolution in M n with increasing PHPMA DP was observed. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies confirmed a spherical morphology in all cases. The nanoparticles flocculated either below pH 4.5 (owing to protonation) or on addition of 60 mM KCl (as a result of charge screening). Thus the anionic end-groups on the PNMEP stabiliser chains make an important contribution to the overall colloidal stability. Similarly, a PNMEP 53 macro-CTA was chain-extended via RAFT aqueous emulsion polymerisation of 2-ethoxyethyl methacrylate (EEMA) at 44 °C. Again, a neutral solution pH was critical for the synthesis of colloidally stable nanoparticles. High conversions were achieved as the target PEEMA DP was varied between 100 and 600 and a linear evolution in molecular weight with PEEMA DP was confirmed by chloroform GPC studies. DLS experiments indicated a monotonic increase in nanoparticle diameter with PEEMA DP and TEM studies confirmed a spherical morphology in each case. In summary, PNMEP can be used as a water-soluble steric stabiliser for aqueous PISA syntheses provided that it contains an anionic carboxylate end-group to enhance its hydrophilic character
    corecore