37 research outputs found

    A chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps

    Get PDF
    Sunlight absorbed at the Earth’s surface is re-emitted as longwave radiation. Increasing atmospheric concentrations of CO2 and other greenhouse gases trap an increasing fraction of such heat, leading to global climate change. Here we show that when a chlorophyll (Chl)-deficient soybean mutant is grown in the field, the fraction of solar-irradiance which is reflected, rather than absorbed, is consistently higher than in commercial varieties. But, while the effect on radiative forcing during the crop cycle at the scale of the individual experimental plot was found to be large (−4.1± 0.6 W m−2 ), global substitution of the current varieties with this genotype would cause a small increase in global surface albedo, resulting in a global shortwave radiative forcing of −0.003 W m−2 , corresponding to 4.4 Gt CO2eq. At present, this offsetting effect would come at the expense of reductions to yields, probably associated with different dynamic of photosynthetic response in the Chl-deficient mutant. The idea of reducing surface-driven radiative forcing by means of Chl-deficient crops therefore requires that novel high-yielding and high-albedo crops are made available soon.publishedVersio

    Biochars in soils : towards the required level of scientific understanding

    Get PDF
    Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Peer reviewe

    Innocuous pressure sensation requires A-type afferents but not functional ΡΙΕΖΟ2 channels in humans.

    Get PDF
    The sensation of pressure allows us to feel sustained compression and body strain. While our understanding of cutaneous touch has grown significantly in recent years, how deep tissue sensations are detected remains less clear. Here, we use quantitative sensory evaluations of patients with rare sensory disorders, as well as nerve blocks in typical individuals, to probe the neural and genetic mechanisms for detecting non-painful pressure. We show that the ability to perceive innocuous pressures is lost when myelinated fiber function is experimentally blocked in healthy volunteers and that two patients lacking AÎČ fibers are strikingly unable to feel innocuous pressures at all. We find that seven individuals with inherited mutations in the mechanoreceptor PIEZO2 gene, who have major deficits in touch and proprioception, are nearly as good at sensing pressure as healthy control subjects. Together, these data support a role for AÎČ afferents in pressure sensation and suggest the existence of an unknown molecular pathway for its detection

    Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress

    No full text
    A lysimeter experiment was performed to study the optimal allocation of limited water supply in potatoes. Irrigation regimes equal to 40, 60 and 80% of maximum evapo-transpiration (ET) were evenly applied over the crop cycle. Other treatments involved withholding 80 mm of irrigation, based on ET, beginning at each of three designated growth stages (tuber initiation, early and late tuber growth). An irrigated control treatment, restoring the entire ET, was included for comparison. Continuous drought stress reduced photosynthesis as irrigation volumes were reduced. Plant biomass and tuber yield decreased almost proportionally to water consumption, so that WUE was roughly constant. N uptake was highest in the control and in 80% ET treatment. Withholding water during tuberisation severely hindered plant physiological processes and penalized tuber yield. Reductions in photosynthesis, total biomass and yield were the greatest when drought was imposed during tuber initiation. The earliest stress resulted in the lowest WUE and N uptake. A new crop water stress index (SI) was proposed, which combines atmospheric demand for water and canopy temperature

    Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress

    No full text
    A lysimeter experiment was performed to study the optimal allocation of limited water supply in potatoes. Irrigation regimes equal to 40, 60 and 80% of maximum evapotranspiration (ET) were evenly applied over the crop cycle. Other treatments involved withholding 80 mm of irrigation, based on ET, beginning at each of three designated growth stages (tuber initiation, early and late tuber growth). An irrigated control treatment, restoring the entire ET, was included for comparison. Continuous drought stress reduced photosynthesis as irrigation volumes were reduced. Plant biomass and tuber yield decreased almost proportionally to water consumption, so that WUE was roughly constant. N uptake was highest in the control and in 80% ET treatment. Withholding water during tuberisation severely hindered plant physiological processes and penalized tuber yield. Reductions in photosynthesis, total biomass and yield were the greatest when drought was imposed during tuber initiation. The earliest stress resulted in the lowest WUE and N uptake. A new crop water stress index (SI) was proposed, which combines atmospheric demand for water and canopy temperature
    corecore