1,135 research outputs found

    Emission Noise and High Frequency Cut-Off of the Kondo Effect in a Quantum Dot

    Full text link
    By coupling on chip a carbon nanotube to a quantum noise detector, a superconductor-insulator-superconductor junction, via a resonant circuit, we measure the emission noise of a carbon nanotube quantum dot in the Kondo regime. The signature of the Kondo effect in the current noise is measured for different ratios of the Kondo temperature over the measured frequency and for different asymmetries of the coupling to the contacts, and compared to finite frequency quantum noise calculations. Our results point towards the existence of a high frequency cut-off of the electronic emission noise associated with the Kondo resonance. This cut-off frequency is of the order of a few times the Kondo temperature when the electronic system is close to equilibrium, which is the case for a strongly asymmetric coupling. On the other hand, this cut-off is shifted to lower frequency in a symmetric coupling situation, where the bias voltage drives the Kondo state out-of-equilibrium. We then attribute the low frequency cut-off to voltage induced spin relaxation.Comment: 5 pages, 3 figures and appendi

    0-π\pi quantum transition in a carbon nanotube Josephson junction: universal phase dependence and orbital degeneracy

    Full text link
    We investigate experimentally the supercurrent in a clean carbon nanotube quantum dot, close to orbital degeneracy, connected to superconducting leads in a regime of strong competition between local electronic correlations and superconducting proximity effect. For an odd occupancy of the dot and intermediate coupling to the reservoir, the Kondo effect can develop in the normal state and screen the local magnetic moment of the dot. This leads to singlet-doublet transitions that strongly affect the Josephson effect in a single-level quantum dot: the sign of the supercurrent changes from positive to negative (0 to π\pi-junction). In the regime of strongest competition between the Kondo effect and proximity effect, meaning that the Kondo temperature equals the superconducting gap, the magnetic state of the dot undergoes a first order quantum transition induced by the superconducting phase difference across the junction. This is revealed experimentally by anharmonic current-phase relations. In addition, the very specific electronic configuration of clean carbon nanotubes, with two nearly orbitally degenerated states, leads to different physics depending whether only one or both quasi-degenerate upper levels of the dots participate to transport, which is determined by their occupancy and relative widths. When the transport of Cooper pairs takes place through only one of these levels, we find that the phase diagram of the phase-dependent 0-π\pi transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case were two levels participate to transport, the nanotube Josephson current exhibits a continuous 0-π\pi transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.Comment: 14 pages, 12 figure

    Manipulating the magnetic state of a carbon nanotube Josephson junction using the superconducting phase

    Full text link
    The magnetic state of a quantum dot attached to superconducting leads is experimentally shown to be controlled by the superconducting phase difference across the dot. This is done by probing the relation between the Josephson current and the superconducting phase difference of a carbon nanotube junction whose Kondo energy and superconducting gap are of comparable size. It exhibits distinctively anharmonic behavior, revealing a phase mediated singlet to doublet transition. We obtain an excellent quantitative agreement with numerically exact quantum Monte Carlo calculations. This provides strong support that we indeed observed the finite temperature signatures of the phase controlled zero temperature level-crossing transition originating from strong local electronic correlations.Comment: 5 pages, 4 figures + supp. material

    Thermal bremsstrahlung probing the thermodynamical state of multifragmenting systems

    Full text link
    Inclusive and exclusive hard-photon (EÎł>_\gamma > 30 MeV) production in five different heavy-ion reactions (36^{36}Ar+197^{197}Au, 107^{107}Ag, 58^{58}Ni, 12^{12}C at 60{\it A} MeV and 129^{129}Xe+120^{120}Sn at 50{\it A} MeV) has been studied coupling the TAPS photon spectrometer with several charged-particle multidetectors covering more than 80% of 4π\pi. The measured spectra, slope parameters and source velocities as well as their target-dependence, confirm the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon collisions that accounts for roughly 20% of the total hard-photon yield. The thermal slopes are a direct measure of the temperature of the excited nuclear systems produced during the reaction.Comment: 4 pages, 3 figures, Proceedings CRIS 2000, 3rd Catania Relativistic Ion Studies, "Phase Transitions in Strong Interactions: Status and Perspectives", Acicastello, Italy, May 22-26, 2000 (to be published in Nuc. Phys. A

    Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species

    Get PDF
    ‱ Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. ‱ Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. ‱ Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. ‱ No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance

    Emission patterns of neutral pions in 40 A MeV Ta+Au reactions

    Get PDF
    Differential cross sections of neutral pions emitted in 181Ta + 197Au collisions at a beam energy of 39.5A MeV have been measured with the photon spectrometer TAPS. The kinetic energy and transverse momentum spectra of neutral pions cannot be properly described in the framework of the thermal model, nor when the reabsorption of pions is accounted for in a phenomenological model. However, high energy and high momentum tails of the pion spectra can be well fitted through thermal distributions with unexpectedly soft temperature parameters below 10 MeV.Comment: 16 pages (double-spaced), 5 figures; corrections after referee's comments and suggestion

    HEAVY ION SECONDARY BEAMS

    Get PDF
    The possibility of producing secondary beams of radioactive nuclei is an interesting application of medium and high energy heavy ion beams. After a first attempt at CERN (1) , two experiments have been performed at GANIL, using 44 MeV/u 40Ar (2) and 65 MeV/u 180 projectiles. This paper recalls the results of the Ar experiment, and presents new data obtained with the 180 beam

    Thermal Bremsstrahlung photons probing the nuclear caloric curve

    Get PDF
    Hard-photon (EÎł>_{\gamma}> 30 MeV) emission from second-chance nucleon-nucleon Bremsstrahlung collisions in intermediate energy heavy-ion reactions is studied employing a realistic thermal model. Photon spectra and yields measured in several nucleus-nucleus reactions are consistent with an emission from hot nuclear systems with temperatures T≈T\approx 4 - 7 MeV. The corresponding caloric curve in the region of excitation energies ϔ⋆≈\epsilon^\star\approx 3{\it A} - 8{\it A} MeV shows lower values of TT than those expected for a Fermi fluid.Comment: 13 pages, 3 figures. To appear in Physics Letters

    Quasi-fission reactions as a probe of nuclear viscosity

    Full text link
    Fission fragment mass and angular distributions were measured from the ^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed data analysis was performed, using the one-body dissipation theory implemented in the code HICOL. The effect of the window and the wall friction on the experimental observables was investigated. Friction stronger than one-body was also considered. The mass and angular distributions were consistent with one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was developed in order to predict reaction time scales required to describe available data on pre-scission neutron multiplicities. The multiplicity data were again consistent with one-body dissipation. The cross-sections for touch, capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev

    Magnetic field independent sub-gap states in hybrid Rashba nanowires

    Full text link
    Sub-gap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically non-trivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process to perform tunnel spectroscopy of discrete sub-gap states in a long nanowire segment. In addition to sub-gap states with a standard magnetic field dependence, we find topologically trivial sub-gap states that are independent of the external magnetic field, i.e. that are pinned to a constant energy as a function of field. We explain this effect qualitatively and quantitatively by taking into account the strong spin-orbit interaction in the nanowire, which can lead to a decoupling of Andreev bound states from the field due to a spatial spin texture of the confined eigenstates
    • 

    corecore