262 research outputs found

    All solution-processed organic photocathodes with increased efficiency and stability via the tuning of the hole-extracting layer †

    Get PDF
    International audiencePhotoelectrodes based on solution-processed organic semiconductors are emerging as low-cost alternatives to crystalline semiconductors and platinum. In this work, the performance and stability of P3HT:PCBM\MoS 3-based photocathodes are considerably improved by changing the hole-extracting layer (HEL). Oxides such as reduced graphene oxide, nickel oxide or molybdenum oxide are deposited via solution processes. With MoO x , a photocurrent density of 2 mA cm À2 during 1 h is obtained with the processing temperature lower than 150 C – thus compatible with flexible substrates. Furthermore, we show that the performances are directly correlated with the work function of the HEL material, and the comparison with solid-state solar cells shows that efficient HELs are not the same for the two types of devices

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Equidistribution of Heegner Points and Ternary Quadratic Forms

    Get PDF
    We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allow both the fundamental discriminant and the conductor to grow. Moreover, for fixed fundamental discriminant and variable conductor, we deduce an effective surjectivity theorem for the reduction map from Heegner points to supersingular points at a fixed inert prime. Our results are applicable to the setting considered by Kolyvagin in the construction of the Heegner points Euler system

    Specific heat of Ce_{0.8}La_{0.2}Al_{3} in magnetic fields: a test of the anisotropic Kondo picture

    Full text link
    The specific heat C of Ce_{0.8}La_{0.2}Al_{3} has been measured as a function of temperature T in magnetic fields up to 14 T. A large peak in C at 2.3 K has recently been ascribed to an anisotropic Kondo effect in this compound. A 14-T field depresses the temperature of the peak by only 0.2 K, but strongly reduces its height. The corresponding peak in C/T shifts from 2.1 K at zero field to 1.7 K at 14 T. The extrapolated specific heat coefficient C/T(T->0) increases with field over the range studied. We show that these trends are inconsistent with the anisotropic Kondo model.Comment: 4 pages, 5 figures, ReVTeX + eps

    Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches

    Get PDF
    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hypho- mycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decom- position process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems

    Kondo engineering : from single Kondo impurity to the Kondo lattice

    Full text link
    In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The extension to a lattice is discussed. Emphasis is given on the fact that the occupation number nfn_f of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three (P,H,T)(P, H, T) phase diagrams are discussed: CeRu2_2Si2_2, CeRhIn5_5 and SmS

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Electrochemical Nanoprobes for Single-Cell Analysis

    Get PDF
    The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5–200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells

    SECM study of a chromium-free anticorrosion adhesion primer for aluminum 2024

    Get PDF
    International audienceHexavalent chromium, largely used for anticorrosion surface treatments of aluminum in aeronautics, will soon be completely banned due to its high toxicity (REACH regulation). Looking for an innovative solution, regarding both anticorrosion and adhesion properties, a chromium free replacement treatment directly inspired by the diazonium chemistry has been developed by the CEA (LICSEN). The evolution of the surface electrochemical properties was followed before and after grafting by means of scanning electrochemical microscopy (SECM). These studies showed that the native aluminum oxide layer is etched during the organic grafting step, which is performed in sulfuric acid. SECM also evidenced that the polymeric grafted film is porous enough to allow the reconstruction of this native aluminum oxide layer after the treatment. On the strength of these results, we decided to extend the thickness of the aluminum oxide layer by an anodization treatment, in the idea that Al2_2O3_3 could be formed through the organic layer without altering it. In that purpose, SECM was used to characterize the films and allow the determination of the best parameters for the organic coating (concentration, immersion time, diazonium function, rinsing, cleaning, additives…) and for the anodization process (duration, applied tension…). Thus, bi-functional coatings were obtained, giving very satisfying results both in terms of corrosion protection and adhesion with painting. This simple and low cost process has been patented . It validates standardized tests and could be swiftly industrializable

    Beyond the water column: aquatic hyphomycetes outside their preferred habitat

    Get PDF
    Aquatic hyphomycetes have adapted to running waters by their uncommon conidial shape, which facilitates dispersal as well as adherence to plant substrata. However, they have been early and regularly reported to occur in a variety of environments other than their preferred habitat (e.g., in lentic freshwaters, brackish and marine environments, in terrestrial niches such as stream banks, dew, canopy waters and tree holes). In addition, several aquatic hyphomycetes have adapted to a mutualistic lifestyle which may involve plant defence, as endophytes in leaves, gymnosperm needles, orchids and terrestrial roots. There are several lines of evidence suggesting that aquatic hyphomycetes survive under terrestrial conditions due to their sexual states. Although exhibiting higher diversity in pristine streams, aquatic hyphomycetes can survive environmental stress, e.g., pollution or river intermittency. They also inhabit ground and hyporheic waters, where they appear to be subjected to both physical and physiological selection. Appropriate methods including molecular ones should provide a more comprehensive view of the occurrence and ecological roles of aquatic hyphomycetes outside their preferred habitat
    corecore