63 research outputs found
IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity
Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function 1?4 . However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer?an aggressive malignancy that is refractory to standard treatments and current immunotherapies 5?8 ?induces endoplasmic reticulum stress and activates the IRE1α?XBP1 arm of the unfolded protein response 9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α?XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α?XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α?XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.Fil: Song, Minkyung. Weill Cornell Medicine; Estados UnidosFil: Sandoval, Tito A.. Weill Cornell Medicine; Estados UnidosFil: Chae, Chang-Suk. Weill Cornell Medicine; Estados UnidosFil: Chopra, Sahil. Weill Cornell Medicine; Estados UnidosFil: Tan, Chen. Weill Cornell Medicine; Estados UnidosFil: Rutkowski, Melanie R.. University of Virginia; Estados UnidosFil: Raundhal, Mahesh. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Chaurio, Ricardo A.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Payne, Kyle K.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Konrad, Csaba. Weill Cornell Medicine; Estados UnidosFil: Bettigole, Sarah E.. Quentis Therapeutics Inc.; Estados UnidosFil: Shin, Hee Rae. Quentis Therapeutics Inc.; Estados UnidosFil: Crowley, Michael J. P.. Weill Cornell Graduate School of Medical Sciences; Estados UnidosFil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute; Estados UnidosFil: Motorykin, Ievgen. Weill Cornell Medicine,; Estados UnidosFil: Zhang, Sheng. Weill Cornell Medicine,; Estados UnidosFil: Manfredi, Giovanni. Weill Cornell Medicine,; Estados UnidosFil: Zamarin, Dmitriy. Memorial Sloan Kettering Cancer Center; Estados UnidosFil: Holcomb, Kevin. Weill Cornell Medicine,; Estados UnidosFil: Rodriguez, Paulo C.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Conejo Garcia, Jose R.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Glimcher, Laurie H.. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Cubillos-Ruiz, Juan R.. Weill Graduate School Of Medical Sciences; Estados Unidos. Weill Graduate School Of Medical Sciences; Estados Unido
Phosphatidylserine targeting for diagnosis and treatment of human diseases
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface
Resolvins suppress tumor growth and enhance cancer therapy
National Cancer Institute grants RO1 01CA170549-02 (to D. Panigrahy and C.N. Serhan), ROCA148633-01A4 (to D. Panigrahy), and GM095467 (to C.N. Serhan); the Stop and Shop Pediatric Brain Tumor Fund (to M.W. Kieran); the CJ Buckley Pediatric Brain Tumor Fund (to M.W. Kieran); Alex Lemonade Stand (to M.W. Kieran); Molly’s Magic Wand for Pediatric Brain Tumors (to M.W. Kieran); the Markoff Foundation Art-In-Giving Foundation (to M.W. Kieran); the Kamen Foundation (to M.W. Kieran); Jared Branfman Sunflowers for Life (to M.W.K.); and The Wellcome Trust program 086867/Z/08 (to M. Perretti)
Harnessing γδ T Cells against Human Gynecologic Cancers
Immuno-oncology has traditionally focused on conventional MHC-restricted αβ T cells. Yet, unconventional γδ T cells, which kill tumor cells in an MHC-unrestricted manner, display characteristics of effector activity and stemness without exhaustion and are nearly universally observed in human gynecologic malignancies, correlating with improved outcomes. These cells do not have a clear counterpart in mice but are also found in the healthy female reproductive tract. Interventions that modulate their in vivo activity, or cellular therapies utilizing γδ T cells as an allogeneic, “off-the-shelf” platform (e.g., for chimeric antigen receptor expression) hold significant potential against challenging tumors like ovarian cancer, which has been stubbornly resistant to the immune checkpoint inhibitors that change the landscape of other human tumors. Here, we discuss recent discoveries on the specific populations of γδ T cells that infiltrate human gynecologic cancers, their anti-tumor activity, and the prospect of redirecting their effector function against tumor cells to develop a new generation of immunotherapies that extends beyond the traditional αβ T cell-centric view of the field
Immune pressure against ovarian cancer depends on antigen-specific TRM T cells
Abstract
Conventional memory T cells classically include central memory T (TCM) cells, residing in lymphoid organs, and effector memory T (TEM) cells, circulating through various tissues. Recently, a novel population of memory T cells has gained interest, namely tissue resident memory T (TRM) cells, which persist in tissues and do not recirculate. It is described that these cells reside in human tumors playing a role in tumor-specific T-cell responses. We found by flow cytometry that between 50%–80% of the CD8+ T cells in human ovarian carcinomas are CD103+CD69+TRM cells. RNA-seq of TRM and their re-circulating counterparts from 7 different human carcinomas showed a very distinctive phenotype, characterized by co-upregulation of effector (GZMB, IFNG) and exhaustion (PD-1, TIM3) markers, along with transcription factors and signaling molecules likely involved in the acquisition of the TRM phenotype. Unexpectedly, we found very little overlap between the TCR repertoire of both populations in multiple tumors, and TRM T cells consistently showed significantly higher clonality. Tumor antigen-specific TRM T cells intratumorally transferred into syngeneic mice were more effective at delaying tumor growth compared with their tumor antigen-specific recirculating counterparts. Finally, both the acquisition and the maintenance of a TRM phenotype within the CD8 T cell compartment at tumor beds are dependent on exposure to tumor cognate antigen. Together, our data indicate that TRM CD8+ T cells, but not their CD103− counterparts, represent tumor antigen-specific effector lymphocytes actively exerting anti-tumor immune pressure in the ovarian cancer microenvironment.</jats:p
A blast without power – cell death induced by the tuberculosis-necrotizing toxin fails to elicit adequate immune responses
In this study, we deploy a doxycycline-dependent suicide switch integrated in a tumor challenge model. With this experimental setup, we characterized the immunological consequences of cells dying by four distinct cell death stimuli in vivo. We observed that apoptotic cell death induced by expression of the truncated form of BH3 interacting-domain death agonist (tBid) and a constitutively active form of caspase 3 (revC3), respectively, showed higher immunogenicity than cell death induced by expression of the tuberculosis-necrotizing toxin (TNT). Our data indicate that the early release of ATP induces the silent clearance of dying cells, whereas the simultaneous presence of ‘find me’ signals and danger-associated molecular patterns (DAMPs) promotes inflammatory reactions and increased immunogenicity. This proposed model is supported by findings showing that the production and release of high concentrations of IL-27 by bone-marrow-derived macrophages (BMDM) is limited to BMDM exposed to those forms of death that simultaneously released ATP and the DAMPs heat-shock protein 90 (HSP90) and high-mobility group box-1 protein (HMGB1). These results demonstrate that the tissue microenvironment generated by dying cells may determine the subsequent immune response
- …
