149 research outputs found

    Gold nanoparticles crossing blood-brain barrier prevent HSV-1 infection and reduce herpes associated amyloid-βsecretion

    Full text link
    Infections caused by HSV-1 and their typical outbreaks invading the nervous system have been related to neurodegenerative diseases. HSV-1 infection may deregulate the balance between the amyloidogenic and non-amyloidogenic pathways, raising the accumulation of amyloid-β peptides, one of the hallmarks in the neurodegenerative diseases. An effective treatment against both, HSV-1 infections and neurodegeneration, is a major therapeutic target. Therefore, gold nanoparticles (NPAus) have been previously studied in immunotherapy, cancer and cellular disruptions with very promising results. Our study demonstrates that a new NPAus family inhibits the HSV-1 infection in a neural-derived SK-N-MC cell line model and that this new NPAus reduces the HSV-1-induced β-secretase activity, as well as amyloid-β accumulation in SK-APP-D1 modifies cell line. We demonstrated that NPAuG3-S8 crosses the blood-brain barrier (BBB) and does not generate cerebral damage to in vivo CD1 mice model. The NPAuG3-S8 could be a promising treatment against neuronal HSV-1 infections and neuronal disorders related to the Aβ peptidesThis work has been (partially) funded by the RD16/0025/0019, projects as part of Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (2013-2016) and cofinanced by Instituto de Salud Carlos III (Subdirección General de Evaluación) and Fondo Europeo de Desarrollo Regional (FEDER), RETIC PT17/0015/0042, Fondo de Investigacion Sanitaria (FIS) (grant numbers: PI16/01863; PI19/01638) and EPIICAL project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, the Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work has been supported partially by a EUROPARTNER: Strengthening and spreading international partnership activities of the Faculty of Biology and Environmental Protection for interdisciplinary research and innovation of the University of Lodz Programme: NAWA International Academic Partnership Programme. This article/publication is based upon work from COST Action CA 17140 “Cancer Nanomedicine from the Bench to the Bedside” supported by COST (European Cooperation in Science and Technology

    Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP

    Get PDF
    Mutations in three genes (PSEN1, PSEN2, and APP) have been identified in patients with early-onset (<65 years) Alzheimer's disease (AD). We performed a screening for mutations in the coding regions of presenilins, as well as exons 16 and 17 of the APP gene in a total of 231 patients from the Iberian peninsular with a clinical diagnosis of early-onset AD (mean age at onset of 52.9 years; range 31-64). We found three novel mutations in PSEN1, one novel mutation in PSEN2, and a novel mutation in the APP gene. Four previously described mutations in PSEN1 were also found. The same analysis was carried in 121 elderly healthy controls from the Iberian peninsular, and a set of 130 individuals from seven African populations belonging to the Centre d'Etude du Polymorphisme Humain-Human Genome Diversity Panel (CEPH-HGDP), in order to determine the extent of normal variability in these genes. Interestingly, in the latter series, we found five new non-synonymous changes in all three genes and a presenilin 2 variant (R62H) that has been previously related to AD. In some of these mutations, the pathologic consequence is uncertain and needs further investigation. To address this question we propose and use a systematic algorithm to classify the putative pathology of AD mutations

    DYRK1A genetic variants are not linked to Alzheimer's disease in a Spanish case-control cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has been implicated in the abnormal hyperphosphorylation of tau in Alzheimer's disease (AD) brain, and the development of neurofibrillary tangles, we examined the contribution of this gene to the susceptibility for AD.</p> <p>Methods</p> <p>We examined genetic variations of DYRK1A by genotyping haplotype tagging SNPs (htSNPs) (rs11701483, rs2835740, rs1137600, rs2835761, rs2835762, rs2154545 and rs8132976) in a group of 634 Spanish AD cases and 733 controls.</p> <p>Results</p> <p>There were no differences in the genotypic, allelic or haplotypic distributions between cases and controls in the overall analysis or after stratification by APOE ε4 allele.</p> <p>Conclusion</p> <p>Our negative findings in the Spanish population argue against the hypothesis that DYRK1A genetic variations are causally related to AD risk. Still, additional studies using different sets of patients and control subjects deserve further attention, since supporting evidence for association between DYRK1A gene and AD risk in the Japanese population exists.</p

    Genetic variation in the tau protein phosphatase-2A pathway is not associated with Alzheimer's disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tau abnormal hyperphosphorylation and the formation of neurofibrillary tangles in AD brain is the result of upregulation of tau kinases and downregulation of tau phosphatases.</p> <p>Methods</p> <p>In a group of 729 Spanish late-onset Alzheimer's disease (AD) patients and 670 healthy controls, we examined variations into a set of candidate genes (PPP2CA, PPP2R2A, ANP32A, LCMT1, PPME1 and PIN1) in the tau protein phosphatase-2A (PP2A) pathway, to address hypotheses of genetic variation that might influence AD risk.</p> <p>Results</p> <p>There were no differences in the genotypic, allelic or haplotypic distributions between cases and controls in the overall analysis or after stratification by age, gender or APOE ε4 allele.</p> <p>Conclusion</p> <p>Our negative findings in the Spanish population argue against the hypothesis that genetic variation in the tau protein phosphatase-2A (PP2A) pathway is causally related to AD risk</p

    Activation of PKR Causes Amyloid ß-Peptide Accumulation via De-Repression of BACE1 Expression

    Get PDF
    BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5′untranslated region (5′UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5′UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds) RNA-activated protein kinase (PKR). PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1), a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5′UTR upstream of a luciferase (luc) gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C) mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5′UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD

    APOE Genotype-Function Relationship: Evidence of −491 A/T Promoter Polymorphism Modifying Transcription Control but Not Type 2 Diabetes Risk

    Get PDF
    BACKGROUND: The apolipoprotein E gene (APOE) coding polymorphism modifies the risks of Alzheimer's disease, type 2 diabetes, and coronary heart disease. Aside from the coding variants, single nucleotide polymorphism (SNP) of the APOE promoter has also been shown to modify the risk of Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigate the genotype-function relationship of APOE promoter polymorphism at molecular level and at physiological level: i.e., in transcription control of the gene and in the risk of type 2 diabetes. In molecular studies, the effect of the APOE -491A/T (rs449647) polymorphism on gene transcription was accessed by dual-luciferase reporter gene assays. The -491 A to T substitution decreased the activity (p<0.05) of the cloned APOE promoter (-1017 to +406). Using the -501 to -481 nucleotide sequence of the APOE promoter as a 'bait' to screen the human brain cDNA library by yeast one-hybrid system yielded ATF4, an endoplasmic reticulum stress response gene, as one of the interacting factors. Electrophoretic-mobility-shift assays (EMSA) and chromatin immuno-precipitation (ChIP) analyses further substantiated the physical interaction between ATF4 and the APOE promoter. Over-expression of ATF4 stimulated APOE expression whereas siRNA against ATF4 suppressed the expression of the gene. However, interaction between APOE promoter and ATF4 was not -491A/T-specific. At physiological level, the genotype-function relationship of APOE promoter polymorphism was studied in type 2 diabetes. In 630 cases and 595 controls, three APOE promoter SNPs -491A/T, -219G/T (rs405509), and +113G/C (rs440446) were genotyped and tested for association with type 2 diabetes in Hong Kong Chinese. No SNP or haplotype association with type 2 diabetes was detected. CONCLUSIONS/SIGNIFICANCE: At molecular level, polymorphism -491A/T and ATF4 elicit independent control of APOE gene expression. At physiological level, no genotype-risk association was detected between the studied APOE promoter SNPs and type 2 diabetes in Hong Kong Chinese

    Genomic Characterization of Host Factors Related to SARS-CoV-2 Infection in People with Dementia and Control Populations: The GR@ACE/DEGESCO Study

    Get PDF
    Emerging studies have suggested several chromosomal regions as potential host genetic factors involved in the susceptibility to SARS-CoV-2 infection and disease outcome. We nested a COVID-19 genome-wide association study using the GR@ACE/DEGESCO study, searching for susceptibility factors associated with COVID-19 disease. To this end, we compared 221 COVID-19 confirmed cases with 17,035 individuals in whom the COVID-19 disease status was unknown. Then, we performed a meta-analysis with the publicly available data from the COVID-19 Host Genetics Initiative. Because the APOE locus has been suggested as a potential modifier of COVID-19 disease, we added sensitivity analyses stratifying by dementia status or by disease severity. We confirmed the existence of the 3p21.31 region (LZTFL1, SLC6A20) implicated in the susceptibility to SARS-CoV-2 infection and TYK2 gene might be involved in COVID-19 severity. Nevertheless, no statistically significant association was observed in the COVID-19 fatal outcome or in the stratified analyses (dementia-only and non-dementia strata) for the APOE locus not supporting its involvement in SARS-CoV-2 pathobiology or COVID-19 prognosis

    Genetic Cross-Interaction between APOE and PRNP in Sporadic Alzheimer's and Creutzfeldt-Jakob Diseases

    Get PDF
    Alzheimer's disease (AD) and Creutzfeldt-Jakob disease (CJD) represent two distinct clinical entities belonging to a wider group, generically named as conformational disorders that share common pathophysiologic mechanisms. It is well-established that the APOE ε4 allele and homozygosity at polymorphic codon 129 in the PRNP gene are the major genetic risk factors for AD and human prion diseases, respectively. However, the roles of PRNP in AD, and APOE in CJD are controversial. In this work, we investigated for the first time, APOE and PRNP genotypes simultaneously in 474 AD and 175 sporadic CJD (sCJD) patients compared to a common control population of 335 subjects. Differences in genotype distribution between patients and control subjects were studied by logistic regression analysis using age and gender as covariates. The effect size of risk association and synergy factors were calculated using the logistic odds ratio estimates. Our data confirmed that the presence of APOE ε4 allele is associated with a higher risk of developing AD, while homozygosity at PRNP gene constitutes a risk for sCJD. Opposite, we found no association for PRNP with AD, nor for APOE with sCJD. Interestingly, when AD and sCJD patients were stratified according to their respective main risk genes (APOE for AD, and PRNP for sCJD), we found statistically significant associations for the other gene in those strata at higher previous risk. Synergy factor analysis showed a synergistic age-dependent interaction between APOE and PRNP in both AD (SF = 3.59, p = 0.027), and sCJD (SF = 7.26, p = 0.005). We propose that this statistical epistasis can partially explain divergent data from different association studies. Moreover, these results suggest that the genetic interaction between APOE and PRNP may have a biological correlate that is indicative of shared neurodegenerative pathways involved in AD and sCJD

    APOE and Alzheimer disease: a major gene with semi-dominant inheritance

    Get PDF
    Apolipoprotein E (APOE) dependent lifetime risks (LTRs) for Alzheimer Disease (AD) are currently not accurately known and odds ratios alone are insufficient to assess these risks. We calculated AD LTR in 7351 cases and 10 132 controls from Caucasian ancestry using Rochester (USA) incidence data. At the age of 85 the LTR of AD without reference to APOE genotype was 11% in males and 14% in females. At the same age, this risk ranged from 51% for APOE44 male carriers to 60% for APOE44 female carriers, and from 23% for APOE34 male carriers to 30% for APOE34 female carriers, consistent with semi-dominant inheritance of a moderately penetrant gene. Using PAQUID (France) incidence data, estimates were globally similar except that at age 85 the LTRs reached 68 and 35% for APOE 44 and APOE 34 female carriers, respectively. These risks are more similar to those of major genes in Mendelian diseases, such as BRCA1 in breast cancer, than those of low-risk common alleles identified by recent GWAS in complex diseases. In addition, stratification of our data by age groups clearly demonstrates that APOE4 is a risk factor not only for late-onset but for early-onset AD as well. Together, these results urge a reappraisal of the impact of APOE in Alzheimer disease
    corecore