141 research outputs found

    The evolutionary history of a mammal species with a highly fragmented range: the phylogeography of the European snow vole.

    Get PDF
    The European snow vole Chionomys nivalis has a patchy distribution restricted to rocky habitats across southern Europe and the Near and Middle East. We carried out a phylogeographic study to provide a biogeographic scenario, based on molecular data, outlining the major processes that determined the current distribution of the species. The samples include 26 snow voles from 14 different populations across the entire species range from Spain to Anatolia and Israel. Nearly complete sequences (1037 bp) of the mitochondrial gene for cytochrome b were sequenced. Relationships among haplotypes were inferred with neighbourjoining, maximum likelihood, maximum parsimony analyses and minimum spanning network. An analysis of mismatch distribution was used to cast light on past demographic expansion. We found 22 different haplotypes that fall into six distinct lineages, all but one is supported by high bootstrap values with all methods. Four lineages are allopatric (Tatra Mts., Iberia, Balkans and Middle East) while divergent haplotypes from two lineages show sympatry in the Alps and the Apennines. The basal relationships of these lineages could not be established by any tree. The mean pairwise genetic distance between lineages ranges from 2.4 to 4.2%. The shape of the mismatch distribution indicated a past expansion event dating back to between 158 000 and 84 000 years ago. These data can be interpreted with the existence of southern glacial refugia (Iberia, Balkans, Middle East and Italy) and one additional northern glacial refugium. The lack of phylogenetic resolution among lineages and the shape of mismatch distribution are indicative of a simultaneous and rapid splitting due to a relatively fast initial expansion of populations. Moreover, the analysis supports the hypothesis of the European origin of C. nivalis and its subsequent eastward dispersion during the Middle Pleistocene

    In "defense" of Podarcis latastei, an Italian insular endemic species (Squamata: Lacertidae)

    Get PDF
    Based on genetic and morphological evidence, Senczuk et al. (2019) formally raised the Podarcis populations from the Western Pontine Islands, previously classified as several subspecies of P. siculus, to species rank, i.e. Podarcis latastei (Bedriaga, 1879). This taxonomic change was not accepted in the checklist of the European herpetofauna by Speybroeck et al. (2020), recently published on Amphibia-Reptilia. In this note we respond to the reasons given by Speybroeck and colleagues and support the validity of Podarcis latastei as an endemic Italian species

    Chromosomal and molecular characterization of Aethomys

    Get PDF
    Aethomys is a common and widespread rodent genus in the African savannas and grasslands. However, its systematics and taxonomy are still unclear as no study has covered the entire range. In fact it might not be a monophyletic genus and perhaps should be split into two subgenera, Micaelamys and Aethomys. In this paper, we present findings based on the cytogenetics and the entire cytochrome b sequence of two species from Zambia (A. kaiseri) and Tanzania (A. chrysophilus), and we compare them with the sequences of a South African species (A. namaquensis) and other allied muroid genera. Comparison of the banded chromosomes revealed complete G-band homology between the autosomes of the two species. However, the X and Y chromosomes clearly differ in size and in C- and G-banding, being much larger in A. kaiseri. Comparison of the cytochrome b sequences places the separation between A. kaiseri and A. chrysophilus at 4.49 Mya, a period of intense speciation in other African muroids. The resulting phylogeny strongly supports the idea of a paraphyletic group, suggesting the need to elevate the previously described subgenera to the genus rank

    Podarcis siculus latastei (Bedriaga, 1879) of the western pontine islands (italy) raised to the species rank, and a brief taxonomic overview of podarcis lizards

    Get PDF
    In recent years, great attention has been paid to many Podarcis species for which the observed intra-specific variability often revealed species complexes still characterized by an unresolved relationship. When compared to other species, P. siculus underwent fewer revisions and the number of species hidden within this taxon may have been, therefore, underestimated. However, recent studies based on genetic and morphological data highlighted a marked differentiation of the populations inhabiting the Western Pontine Archipelago. In the present work we used published genetic data (three mitochondrial and three nuclear gene fragments) from 25 Podarcis species to provide a multilocus phylogeny of the genus in order to understand the degree of differentiation of the Western Pontine populations. In addition, we analyzed new morphometric traits (scale counts) of 151 specimens from the main islands of the Pontine Archipelago. The phylogenetic analysis revealed five principal Podarcis groups with biogeographic consistency. The genetic distinctiveness of the Podarcis populations of the Western Pontine Islands is similar or even more ancient than those observed in numerous other pairs of Podarcis sister species. In the light of these evidences we raise the Western Pontine lizards to specific rank; thus they should be referred to as Podarcis latastei

    Retrofitted green roofs and walls and improvements in thermal comfort

    Full text link
    © 2017 Author(s). Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation

    Cryptic speciation and chromosomal repatterning in the South African climbing mice Dendromus (Rodentia, Nesomyidae)

    Get PDF
    We evaluate the intra- and interspecific diversity in the four South African rodent species of the genus Dendromus. The molecular phylogenetic analysis on twenty-three individuals have been conducted on a combined dataset of nuclear and mitochondrial markers. Moreover, the extent and processes underlying chromosomal variation, have been investigated on three species by mean of G-, C-bands, NORs and Zoo-FISH analysis. The molecular analysis shows the presence of six monophyletic lineages corresponding to D. mesomelas, D. mystacalis and four lineages within D. cfr. melanotis with high divergence values (ranges: 10.6% – 18.3%) that raises the question of the possible presence of cryptic species. The first description of the karyotype for D. mesomelas and D. mystacalis and C- and G- banding for one lineage of D. cfr. melanotis are reported highlighting an extended karyotype reorganization in the genus. Furthermore, the G-banding and Zoo-FISH evidenced an autosome-sex chromosome translocation characterizing all the species and our timing estimates this mutation date back 7.4 mya (Late Miocene). Finally, the molecular clock suggests that cladogenesis took place since the end of Miocene to Plio-Pleistocene, probably due to ecological factors, isolation in refugia followed by differential adaptation to the mesic or dry habitat

    A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations

    Get PDF
    Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse

    Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    Get PDF
    Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions: The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference

    Skin sheds as a useful DNA source for lizard conservation

    Get PDF

    The phylogenetic position of Lygodactylus angularis and the utility of using the 16S rDNA gene for delimiting species in Lygodactylus (Squamata, Gekkonidae)

    Get PDF
    The African genus Lygodactylus Gray, is composed of roughly 60 species of diurnal geckos that inhabit tropical and temperate Africa, Madagascar, and South America. In this study, we assessed the phylogenetic position of L. angularis, for which molecular data were so far lacking, by means of sequence analysis of the mitochondrial 16S rDNA gene. We also compared intraspecific vs. interspecific genetic divergences using an extended data set (34 species, 153 sequences), to determine whether a fragment of this gene can be useful for species identification and to reveal the possible existence of new cryptic species in the genus. The analysis placed L. angularis in a monophyletic group together with members of “fischeri” and “picturatus” groups. Nevertheless, the independence of the “angularis” lineage is supported by the high genetic divergence. Comparison of intraspecific vs. interspecific genetic distances highlights that, assuming an equal molecular rate of evolution among the studied species for the used gene, the threshold value useful for recognising a candidate new species can be tentatively placed at 7%. We identified four species that showed an intraspecific divergence higher than, or close to, the 7% threshold: L. capensis (8.7%), L. gutturalis (9.3%), L. madagascariensis (6.5%) and L. picturatus (8.1%). Moreover, two species, L. mombasicus and L. verticillatus, are paraphyletic in terms of gene genealogy. Thus, the study shows that a short fragment of the 16S rDNA gene can be an informative tool for species-level taxonomy in the genus Lygodactylus
    corecore