100 research outputs found

    The GALEX/S4G UV-IR color-color diagram: Catching spiral galaxies away from the Blue Sequence

    Get PDF
    We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6μ\mum photometry for > 2000 galaxies, available for 90% of the S4G sample. We find a very tight "GALEX Blue Sequence (GBS)" in the (FUV-NUV) versus (NUV-[3.6]) color-color diagram which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ\tau) and a degeneracy between τ\tau and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the "GALEX Green Valley (GGV)". At the red end of the GBS, at (NUV-[3.6]) > 5, we find a wider "GALEX Red Sequence (GRS)" mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M[3.6]\rm{M}_{[3.6]}), since both massive (M>1011MM_{\star} > 10^{11} M_{\odot}) blue and red sequence galaxies are identified. The type that is proportionally more often found in the GGV are the S0-Sa's and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on timescale of 10810^{8}years.Comment: 7 pages, 4 figures, 1 table. Accepted for publication in ApJ

    Belief Propagation for Min-Cost Network Flow: Convergence and Correctness

    Get PDF
    Distributed, iterative algorithms operating with minimal data structure while performing little computation per iteration are popularly known as message passing in the recent literature. Belief propagation (BP), a prototypical message-passing algorithm, has gained a lot of attention across disciplines, including communications, statistics, signal processing, and machine learning as an attractive, scalable, general-purpose heuristic for a wide class of optimization and statistical inference problems. Despite its empirical success, the theoretical understanding of BP is far from complete. With the goal of advancing the state of art of our understanding of BP, we study the performance of BP in the context of the capacitated minimum-cost network flow problem—a cornerstone in the development of the theory of polynomial-time algorithms for optimization problems and widely used in the practice of operations research. As the main result of this paper, we prove that BP converges to the optimal solution in pseudopolynomial time, provided that the optimal solution of the underlying network flow problem instance is unique and the problem parameters are integral. We further provide a simple modification of the BP to obtain a fully polynomial-time randomized approximation scheme (FPRAS) without requiring uniqueness of the optimal solution. This is the first instance where BP is proved to have fully polynomial running time. Our results thus provide a theoretical justification for the viability of BP as an attractive method to solve an important class of optimization problems.National Science Foundation (U.S.). Career Project (CNS 0546590)Natural Sciences and Engineering Research Council of Canada (NSERC). Postdoctoral FellowshipNational Science Foundation (U.S.). EMT Project (CCF 0829893)National Science Foundation (U.S.). (CMMI-0726733

    An Experimental Biomimetic Platform for Artificial Olfaction

    Get PDF
    Artificial olfactory systems have been studied for the last two decades mainly from the point of view of the features of olfactory neuron receptor fields. Other fundamental olfaction properties have only been episodically considered in artificial systems. As a result, current artificial olfactory systems are mostly intended as instruments and are of poor benefit for biologists who may need tools to model and test olfactory models. Herewith, we show how a simple experimental approach can be used to account for several phenomena observed in olfaction

    Genetically-Based Olfactory Signatures Persist Despite Dietary Variation

    Get PDF
    Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects

    Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines- IEA EBC ANNEX 72

    Get PDF
    The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The "be2226" reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition structure to conduct LCA. Recommendations are formulated on the basis of these findings

    Resolving the disc–halo degeneracy – I: a look at NGC 628

    Get PDF
    The decomposition of the rotation curve of galaxies into contribution from the disc and dark halo remains uncertain and depends on the adopted mass-to-light ratio (M/L) of the disc. Given the vertical velocity dispersion of stars and disc scale height, the disc surface mass density and hence the M/L can be estimated. We address a conceptual problem with previous measurements of the scale height and dispersion. When using this method, the dispersion and scale height must refer to the same population of stars. The scale height is obtained from near-infrared (IR) studies of edge-on galaxies and is weighted towards older kinematically hotter stars, whereas the dispersion obtained from integrated light in the optical bands includes stars of all ages. We aim to extract the dispersion for the hotter stars, so that it can then be used with the correct scale height to obtain the disc surface mass density. We use a sample of planetary nebulae (PNe) as dynamical tracers in the face-on galaxy NGC 628. We extract two different dispersions from its velocity histogram – representing the older and younger PNe. We also present complementary stellar absorption spectra in the inner regions of this galaxy and use a direct pixel fitting technique to extract the two components. Our analysis concludes that previous studies, which do not take account of the young disc, underestimate the disc surface mass density by a factor of ∼2. This is sufficient to make a maximal disc for NGC 628 appear like a submaximal disc

    Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development

    Get PDF
    Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified
    corecore