14 research outputs found

    Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals—16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-β precursor protein processing, amyloid-β aggregation, lipid metabolism and microglial function in AD

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease

    No full text
    International audienceThe SORL1 protein plays a protective role against the secretion of the amyloid β peptide, a key event in the pathogeny of Alzheimer's disease. We assessed the impact of SORL1 rare variants in early-onset Alzheimer's disease (EOAD) in a case-control setting. We conducted a whole exome analysis among 484 French EOAD patients and 498 ethnically matched controls. After collapsing rare variants (minor allele frequency ≤1%), we detected an enrichment of disruptive and predicted damaging missense SORL1 variants in cases (odds radio (OR)=5.03, 95% confidence interval (CI)=(2.02-14.99), P=7.49.10(-5)). This enrichment was even stronger when restricting the analysis to the 205 cases with a positive family history (OR=8.86, 95% CI=(3.35-27.31), P=3.82.10(-7)). We conclude that predicted damaging rare SORL1 variants are a strong risk factor for EOAD and that the association signal is mainly driven by cases with positive family history

    Exome sequencing identifies rare damaging variants in the ATB8B4 and ABCA1 genes as novel risk factors for Alzheimer's disease

    Get PDF
    BACKGROUND: Damaging rare variants in the TREM2, SORL1 and ABCA7 genes have been associated with an increased risk of developing Alzheimer's Disease (AD) with odds ratios that were not observed since the identification of the main AD genetic risk factor, the APOE-ε4 allele. Here, we aimed to identify additional AD-associated genes by investigating the burden of rare damaging variants in the exomes of AD cases and controls. METHOD: On a single server, we analyzed in two stages, the data from 52,270 exome sequences from several independent datasets from Europe and the United States. After comprehensive QC, Stage-1 and Stage-2 datasets comprised in total 16,396 AD cases (5,672 EOAD) and 18,107 controls with European ancestry. All detected non-synonymous and loss-of-function rare variants were prioritized by REVEL and LOFTEE, and analyzed in a per-gene burden analysis. After a Stage-1 discovery analysis, we replicated findings in an independent dataset (Stage-2). We combined the Stage-1 and Stage-2 datasets and determined, for each gene, the features of the variants that drive the burden-associations. RESULTS: We confirmed the AD-association of rare damaging variants SORL1, TREM2, ABCA7, and newly identified a significant AD-association of rare damaging variants in the ATP8B4 and ABCA1 genes. In addition, we find a strong indication for the AD-association of ADAM10 and SRC genes (Stage-2 p<0.05). For most genes, we observed a larger effect size for LOF variants compared to missense variants (Figure-A). High-impact variants in these genes are mostly extremely rare and enriched in AD patients with early ages at onset (Figure-B). CONCLUSION: We identified, for the first time, the AD-association of rare damaging variants in two genes: (i) microglial ATP8B4 which is involved in phospholipid transport, and (ii) ABCA1 which plays a critical role in lipidation of apoE thereby supporting Aβ processing. Further, we found strong evidence for the AD-association of damaging variants in ADAM10 and SRC genes. ADAM10 is involved in the proteolytic processing of APP, while SRC is a Non-Receptor Tyrosine Kinase which binds PTK2B/Pyk2, a known AD risk factor. Together, our study provides further evidence for the role of Aβ and microglia in AD pathophysiology

    Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-β precursor protein processing, amyloid-β aggregation, lipid metabolism and microglial function in AD

    Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-β precursor protein processing, amyloid-β aggregation, lipid metabolism and microglial function in AD

    Correction: Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation (Molecular Psychiatry, (2018), 10.1038/s41380-018-0112-7)

    No full text
    Following publication, the authors noticed that ‘Laura Cantwell’, ‘Otto Valladares’, and ‘Li-San Wang’ were inadvertently omitted from the author list. These authors have now been added to the author list in 21st, 77th, and 79th position, respectively. This has been corrected in both the PDF and HTML versions of the article

    Mol Psychiatry

    Get PDF
    The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 x 10(-7)), an immunoglobulin gene whose antibodies interact with beta-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 x 10(-7)), and a zinc-finger protein ZNF655 (gene-based p = 5.0 x 10(-6)). The latter two suggest an important role for transcriptional regulation in AD pathogenesis

    Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's disease

    No full text
    Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%(1). The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants(2). Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3,CLU,ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-beta precursor protein processing, amyloid-beta aggregation, lipid metabolism and microglial function in AD
    corecore