140 research outputs found

    Dao's question on the asymptotic behaviour of fullness

    Full text link
    For a local ring (R, \M) of infinite residue field and positive depth, we address the question raised by H. Dao on how to control the asymptotic behaviour of the \M-full, full, and weakly \M-full properties of certain ideals (such notions were first investigated by D. Rees and J. Watanabe), by means of bounding appropriate numbers which express such behaviour. We establish upper bounds, and in certain cases even formulas for such invariants. The main tools used in our results are reduction numbers along with Ratliff-Rush closure of ideals, and also the Castelnuovo-Mumford regularity of the Rees algebra of \M.Comment: 11 pages. Submitted for publicatio

    Evaluation of two ultrasonic systems for analysis of porosity in ceramic

    Get PDF
    The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS / IEN) has developed an ultrasonic technique to measure porosity in nuclear fuel pellets (UO2). By difficulties related to the handling of UO2 pellets, Alumina (Al2O3) pellets have been used in preliminary tests, until a methodology for tests with pellets of UO2 could be defined. In a previous work, in which a contact ultrasonic technique was used, good results were obtained to measure the porosity of Alumina pellets. In the current studies, it was found that the frequency spectrum of an ultrasonic pulse is very sensitive to the porosity of the medium in which it propagates. In order to define the most appropriate experimental apparatus for using immersion technique in future tests, two ultrasonic systems, available in LABUS, which permit to work with the ultrasonic pulse in the frequency domain were evaluated . One system was the Explorer II (Matec INSTRUMENTS) and the other the ultrasonic pulse generator Epoch 4 Plus (Panametrics) coupled with an oscilloscope TDS 3032B (Tektronix). For this evaluation, several frequency spectra were obtained with the two equipment, by the passage of the ultrasonic wave in the same pellet of Alumina. This procedure was performed on four different days, on each day 12 ultrasonic signals were acquired, one signal every 10 minutes, with each apparatus. The results were compared and analyzed as regard the repeatability of the frequency spectra obtained

    Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    Get PDF
    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain

    Identifying Regulators for EAG1 Channels with a Novel Electrophysiology and Tryptophan Fluorescence Based Screen

    Get PDF
    Ether-à-go-go (EAG) channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG1 channels have no known regulatory ligands.Here we screened a library of small biologically relevant molecules against EAG1 channels with a novel two-pronged screen to identify channel regulators. In one arm of the screen we used electrophysiology to assess the functional effects of the library compounds on full-length EAG1 channels. In an orthogonal arm, we used tryptophan fluorescence to screen for binding of the library compounds to the isolated C-terminal region.Several compounds from the flavonoid, indole and benzofuran chemical families emerged as binding partners and/or regulators of EAG1 channels. The two-prong screen can aid ligand and drug discovery for ligand-binding domains of other ion channels

    Emergent research and priorities for shark and ray conservation

    Get PDF
    Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients

    Triple antiplatelet therapy for preventing vascular events: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dual antiplatelet therapy is usually superior to mono therapy in preventing recurrent vascular events (VEs). This systematic review assesses the safety and efficacy of triple antiplatelet therapy in comparison with dual therapy in reducing recurrent vascular events.</p> <p>Methods</p> <p>Completed randomized controlled trials investigating the effect of triple versus dual antiplatelet therapy in patients with ischaemic heart disease (IHD), cerebrovascular disease or peripheral vascular disease were identified using electronic bibliographic searches. Data were extracted on composite VEs, myocardial infarction (MI), stroke, death and bleeding and analysed with Cochrane Review Manager software. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using random effects models.</p> <p>Results</p> <p>Twenty-five completed randomized trials (17,383 patients with IHD) were included which involving the use of intravenous (iv) GP IIb/IIIa inhibitors (abciximab, eptifibatide, tirofiban), aspirin, clopidogrel and/or cilostazol. In comparison with aspirin-based therapy, triple therapy using an intravenous GP IIb/IIIa inhibitor significantly reduced composite VEs and MI in patients with non-ST elevation acute coronary syndromes (NSTE-ACS) (VE: OR 0.69, 95% CI 0.55-0.86; MI: OR 0.70, 95% CI 0.56-0.88) and ST elevation myocardial infarction (STEMI) (VE: OR 0.39, 95% CI 0.30-0.51; MI: OR 0.26, 95% CI 0.17-0.38). A significant reduction in death was also noted in STEMI patients treated with GP IIb/IIIa based triple therapy (OR 0.69, 95% CI 0.49-0.99). Increased minor bleeding was noted in STEMI and elective percutaneous coronary intervention (PCI) patients treated with GP IIb/IIIa based triple therapy. Stroke events were too infrequent for us to be able to identify meaningful trends and no data were available for patients recruited into trials on the basis of stroke or peripheral vascular disease.</p> <p>Conclusions</p> <p>Triple antiplatelet therapy based on iv GPIIb/IIIa inhibitors was more effective than aspirin-based dual therapy in reducing VEs in patients with acute coronary syndromes (STEMI and NSTEMI). Minor bleeding was increased among STEMI and elective PCI patients treated with a GP IIb/IIIa based triple therapy. In patients undergoing elective PCI, triple therapy had no beneficial effect and was associated with an 80% increase in transfusions and an eightfold increase in thrombocytopenia. Insufficient data exist for patients with prior ischaemic stroke and peripheral vascular disease and further research is needed in these groups of patients.</p

    The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid Parasitoid Species Complex

    Get PDF
    Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches

    The Large Hadron-Electron Collider at the HL-LHC

    Get PDF
    The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.Peer reviewe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore