35 research outputs found

    Salicaceae afforestations: advantage or disadvantage for Neotropical otter in its southernmost distribution?

    Get PDF
    Anthropogenic environmental changes may affect habitat suitability for wildlife. Currently, the commercial plantation of non-native trees is one of the most important types of land-use worldwide. The Lower Paraná River Delta in Argentina is a macromosaic of wetlands of high biodiversity value, which has been modified by the afforestation with Salicaceae species. In this context, the Neotropical otter, Lontra longicaudis (classified as Near Threatened at world level and as Endangered in Argentina), faces new challenges related to the colonization of these afforestation landscapes. On this basis, we investigated whether these human-made habitats could be a suitable habitat for the Neotropical otter. We analyzed habitat use and selection by this species at two scales of perception (micro- and macrohabitat) and in two contrasting seasons (winter and summer). Our results show that drainage channels within the afforestation landscape provide suitable conditions for this species during winter. The most important variables at macrohabitat level (dissolved oxygen, pH, and electric conductivity) and seasonally (temperature and pH) appeared to be related to prey availability in the watercourse stretches. At the microhabitat level, the primary factor for distinguishing between used and available sites was soil hardness, possibly related to favorable edaphic conditions for digging burrows. Therefore, the survival of this species in the area will depend on the afforestation management, mainly on those actions that decrease dissolved oxygen levels of waters and increase soil hardness of banks. Under the current wetland loss scenario in the region, afforestation systems may contribute to the conservation of this species.Fil: Krug, Cecilia Pamela. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Cabrera, M. Sol. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Quintana, Ruben Dario. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentin

    The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function

    Get PDF
    It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F1Fo-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization

    Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency

    Get PDF
    Respiratory chain complexes assemble into functional quaternary structures called supercomplexes (RCS) within the folds of the inner mitochondrial membrane, or cristae. Here, we investigate the relationship between respiratory function and mitochondrial ultrastructure and provide evidence that cristae shape determines the assembly and stability of RCS and hence mitochondrial respiratory efficiency. Genetic and apoptotic manipulations of cristae structure affect assembly and activity of RCS in vitro and in vivo, independently of changes to mitochondrial protein synthesis or apoptotic outer mitochondrial membrane permeabilization. We demonstrate that, accordingly, the efficiency of mitochondria-dependent cell growth depends on cristae shape. Thus, RCS assembly emerges as a link between membrane morphology and function.We thank A. Gross (Weizmann Institute) for anti-BID antibody, A. Latorre-Pellicer (CNIC) for mtDNA RT-PCR, and M. Albiero (VIMM) for tail vein injections. L.S. is a senior scientist of the Dulbecco-Telethon Institute. This work is supported by Telethon Italy (GGP12162, GPP10005B, and TCR02016), AIRC Italy, MOH Italy (GR 09.021), and Swiss National Foundation (31-118171). J.A.E. is supported by MINECO (SAF2012-32776 and CSD2007-00020), DGA (B55, PIPAMER O905), and CAM (S2011/BMD-2402). S.C. was supported by a Journal of Cell Science Travelling Fellowship. C.F. was supported by an AIRC Biennial Fellowship. The CNIC is funded by the Instituto de Salud Carlos III-MICINN and the Pro-CNIC Foundation.S

    Mitochondrial ROS contribute to neuronal ceroid lipofuscinosis pathogenesis

    Get PDF
    Trabajo presentado al 20th Biennial Meeting of The Society for Free Radical Research International (SFRR-I) del 15 al 18 de marzo de forma virtualNeuronal ceroid lipofuscinoses (NCLs), known as Batten disease, are the most common of the rare neurodegenerative disorders in children. These disorders are grouped together based on clinical similarities and uniform neuropathological features, including accumulation of lipofuscin in lysosomes and widespread gliosis. CLN7 disease is one of these NCLs that present in late infancy and is caused by mutations in the CLN7/MFSD8 gene, which encodes a lysosomal membrane glycoprotein of unknown function, hence the biochemical processes affected by CLN7-loss of function are not understood. Here, we found in the Cln7Δex2 mouse model of CLN7 disease that failure in the autophagy-lysosomal pathway causes aberrant accumulation of reactive oxygen species (ROS)-producing brain mitochondria. Metabolic profile analysis of Cln7Δex2 neurons revealed a decrease in the basal oxygen consumption rate (OCR), ATP-linked and maximal OCR and proton leak, indicating bioenergetically impaired mitochondria. To assess the impact of ROS on CLN7 disease progression, Cln7Δex2 mice were crossed with mice expressing a mitochondrial-tagged form of catalase (mCAT) governed by a neuron-specific promoter (Cln7Δex2-CAMKIIaCre-mCAT). The increased mROS observed in Cln7Δex2 neurons was abolished in Cln7Δex2- CAMKIIaCre-mCAT neurons, verifying the efficacy of this approach. The brain mitochondrial swelling and mitochondrial cristae profile widening observed in Cln7Δex2 mice were abolished in Cln7Δex2-CAMKIIaCre-mCAT mice. Notably, Cln7Δex2 brain accumulation of subunit C-ATPase and lysosomal lipofuscin, as well as gliosis, which are hallmarks of the disease, were ameliorated in Cln7Δex2- CAMKIIaCre-mCAT mice. Altogether, these findings indicate that the generation of ROS by bioenergetically-impaired mitochondria in Cln7Δex2 neurons contributes to the histopathological symptoms of CLN7 disease

    Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

    Get PDF
    CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases

    Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

    Get PDF
    CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.This work was funded by the European Regional Development Fund, European Union’s Horizon 2020 Research and Innovation Programme (BATCure grant No. 666918 to J.P.B., S.E.M., D.L.M., S.S., and T.R.M.; PANA grant No. 686009 to A.A.), Agencia Estatal de Investigación (PID2019-105699RB-I00/AEI/10.13039/501100011033 and RED2018‐102576‐T to J.P.B.; SAF2017-90794-REDT to A.A.), Instituto de Salud Carlos III (CB16/10/00282 to J.P.B.; PI18/00285; RD16/0019/0018 to A.A.), Junta de Castilla y León (CS/151P20 and Escalera de Excelencia CLU-2017-03 to J.P.B. and A.A.), Ayudas Equipos Investigación Biomedicina 2017 Fundación BBVA (to J.P.B.), and Fundación Ramón Areces (to J.P.B. and A.A.). SM benefits from MRC funding to the MRC Laboratory for Molecular Cell Biology University Unit at UCL (award code MC_U12266B) towards lab and office space. Part of this work was funded by Gero Discovery L.L.C. M.G.M. is an ISCIII-Sara Borrel contract recipient (CD18/00203)

    Aberrant upregulation of glycolysis mediates CLN7 neuronal ceroid lipofuscinosis

    Get PDF
    Resumen del trabajo presentado en el 43rd Annual Meeting of the Spanish Society of Biochemistry & Molecular Biology, celebrado en Barcelona, del 19 al 22 de julio de 2021CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in the autophagy-lysosomal pathway causes accumulation of structurally and bioenergetically impaired neuronal mi- tochondria. In vivo genetic approach revealed elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolysis activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFK- FB3, a glycolytic-promoting enzyme normally unstable in healthy neurons. Pharmacological inhibition of PFKFB3 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectified key disease hallmarks. Thus, aberrant upregulation of neuronal glycolysis contributes to CLN7 patho-genesis and targeting PFKFB3 may alleviate this and other lysosomal storage diseasesThis work was funded by Agencia Estatal de Investigación (PID2019-105699RB-I00).Peer reviewe

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Linking mitochondrial function and shape to control cell viability

    No full text
    Trabajo presentado en la XXXIII Annual Meeting Chilean Society for Cell Biology, celebrada en Puerto Varas (Chile), del 25 al 29 de noviembre de 201
    corecore