530 research outputs found
Wear and damage transitions of wheel and rail materials under various contact conditions
This study discusses a TÎł/A method of plotting wear data from a twin-disc machine for identifying the wear and damage transitions of wheel and rail materials. As found in previous work, three wear regimes (mild wear, severe wear and catastrophic wear) of U71Mn rail material were identified in dry rolling-sliding contact tests. It was determined that the damage mechanism transforms in the different wear regimes. Here earlier studies were extended to establish wear behavior for the presence of a number of third body materials (oil, water, friction enhancers) and a rail cladding process designed to make wheels and rails more durable. This has provided much needed data for Multi-Body Dynamics (MBD) simulations, and will allow better predictions of profile evolution of wheel and rail over a wider range of conditions
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Fabrication of CuO nanoparticle interlinked microsphere cages by solution method
Here we report a very simple method to convert conventional CuO powders to nanoparticle interlinked microsphere cages by solution method. CuO is dissolved into aqueous ammonia, and the solution is diluted by alcohol and dip coating onto a glass substrate. Drying at 80 °C, the nanostructures with bunchy nanoparticles of Cu(OH)2can be formed. After the substrate immerges into the solution and we vaporize the solution, hollow microspheres can be formed onto the substrate. There are three phases in the as-prepared samples, monoclinic tenorite CuO, orthorhombic Cu(OH)2, and monoclinic carbonatodiamminecopper(II) (Cu(NH3)2CO3). After annealing at 150 °C, the products convert to CuO completely. At annealing temperature above 350 °C, the hollow microspheres became nanoparticle interlinked cages
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
Search for the Lepton Flavor Violation Processes and
The lepton flavor violation processes and are
searched for using a sample of 5.8 events collected with
the BESII detector. Zero and one candidate events, consistent with the
estimated background, are observed in and
decays, respectively. Upper limits on the branching ratios are determined to be
and at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Observation of the decay \psip\rar\kstark
Using 14 million events collected with the BESII detector,
branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to
be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and
\calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The
results confirm the violation of the "12%" rule for these two decay channels
with higher precision. A large isospin violation between the charged and
neutral modes is observed.Comment: 5 pages, 3 figure
Improved protocols of secure quantum communication using W states
Recently, Hwang et al. [Eur. Phys. J. D. 61, 785 (2011)] and Yuan et al.
[Int. J. Theo. Phys. 50, 2403 (2011)] have proposed two efficient protocols of
secure quantum communication using 3-qubit and 4-qubit symmetric W state
respectively. These two dense coding based protocols are generalized and their
efficiencies are considerably improved. Simple bounds on the qubit efficiency
of deterministic secure quantum communication (DSQC) and quantum secure direct
communication (QSDC) protocols are obtained and it is shown that dense coding
is not essential for designing of maximally efficient DSQC and QSDC protocols.
This fact is used to design maximally efficient protocols of DSQC and QSDC
using 3-qubit and 4-qubit W states.Comment: 8 page
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
- âŠ