153 research outputs found

    Larvivorous fish for preventing malaria transmission.

    Get PDF
    Background Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. Objectives To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Selection criteria Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Data collection and analysis Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. Main results We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species

    Diet breadth, coexistence and rarity in bumblebees

    Get PDF
    Factors that determine the relative abundance of bumblebee species remain poorly understood, rendering management of rare and declining species difficult. Studies of bumblebee communities in the Americas suggest that there are strong competitive interactions between species with similar length tongues, and that this competition determines the relative abundance of species. In contrast, in Europe it is common to observe several short-tongued species coexisting with little or no evidence for competition shaping community structure. In this study we examine patterns of abundance and distribution in one of the most diverse bumblebee communities in Europe, found in the mountains of southern Poland. We quantify forage use when collecting nectar and pollen for 23 bumblebee species, and examine patterns of co-occurrence and niche overlap to determine whether there is evidence for inter-specific competition. We also test whether rarity can be explained by diet breadth. Up to 16 species were found coexisting within single sites, with species richness peaking in mountain pasture at ~1000m altitude. Results concur with previous studies indicating that the majority of pollen collected by bumblebees is from Fabaceae, but that some bee species (e.g. B. ruderatus) are much more heavily dependent on Fabaceae than others (e.g. B. lucorum). Those species that forage primarily on Fabaceae tended to have long tongues. In common with studies in the UK, diet breadth was correlated with abundance: rarer species tended to visit fewer flower species, after correcting for differences in sample size. No evidence was found for similarity in tongue length or dietary overlap influencing the likelihood of co-occurrence of species. However, the most abundant species (which co-occurred at most sites) occupied distinct dietary niche space. While species with tongues of similar length tended, overall, to have higher dietary niche overlap, among the group of abundant short-tongued species that commonly co-occurred there was marked dietary differentiation which may explain their coexistence

    Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Big sagebrush (<it>Artemisia tridentata</it>) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush.</p> <p>Results</p> <p>cDNA of <it>A. tridentata </it>sspp. <it>tridentata </it>and <it>vaseyana </it>were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. <it>tridentata </it>and 20,250 contigs in ssp. <it>vaseyana</it>. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e<sup>-15</sup>). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. <it>wyomingensis</it>) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. <it>tridentata </it>and <it>vaseyana </it>identified in the combined assembly were also polymorphic within the two geographically distant ssp. <it>wyomingensis </it>samples.</p> <p>Conclusion</p> <p>We have produced a large EST dataset for <it>Artemisia tridentata</it>, which contains a large sample of the big sagebrush leaf transcriptome. SNP mapping among the three subspecies suggest the origin of ssp. <it>wyomingensis </it>via mixed ancestry. A large number of SNP and SSR markers provide the foundation for future research to address questions in big sagebrush evolution, ecological genetics, and conservation using genomic approaches.</p

    Sex-related differences in aging rate are associated with sex chromosome system in amphibians

    Get PDF
    Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.Peer reviewe

    The three great issues confronting Europe - economic, environmental and political

    Get PDF
    Europe is confronted by an intimidating triple challenge – economic stagnation, climate change, and a governance crisis. This paper demonstrates how the three challenges are closely inter-related, and discusses how they can be dealt with more effectively in order to arrive at a more economically secure, environmentally sustainable and well governed Europe. In particular, a return to classic economic growth cannot come at the expense of greater risk of irreversible climate change. Instead, what is required is a fundamental transformation of the economy to a new ‘green’ trajectory based on rapidly diminishing emission of greenhouse gases. Following this path would mean turning Europe into a veritable laboratory for sustainable growth, environmentally as well as socially

    Plant-pollinator co-evolution : it's time to reconnect with Optimal Foraging Theory and Evolutionarily Stable Strategies

    No full text
    Pollination syndromes (correlations between floral and pollinator traits), have long interested ecologists, but remain inadequately explained. For example, plant species pollinated by relatively large animals cannot have evolved correspondingly high rates of nectar-energy production simply because such animals need relatively more energy; evolution does not work that way. The inverse correlation between pollinator body-size and nectar concentration is similarly difficult to explain.To remedy this, I propose that Optimal Foraging Theory (OFT) and the Evolutionarily Stable Strategy approach (ESS) be combined and applied to pollination syndromes. Both hypothesise that, through evolution, average biological fitness of individuals has been maximised. OFT predicts foraging consequences for pollinators varying in body size, and other attributes, allowing the ESS approach to be applied to co-adapted plant-pollinator traits. This should lead to predicted relationships between plants and their pollinators.The steps involved in this process are conceptually straightforward, but empirically difficult, which may explain why the approach has been very little pursued in the past. However such difficulties can be overcome, thus pointing to the future.We surely need to understand pollination systems, in order to conserve and manage them. It is therefore time to reconnect OFT and plant-pollinator co-evolution, within the general ESS approach, and hence increasing our understanding of pollination syndromes and other plant-pollinator relationships.7 page(s

    Reply to Pall-Gergely 'On the confusion of quality with impact : a note on Pyke's M-Index'

    No full text
    2 page(s

    Floral nectar : pollinator attraction or manipulation?

    No full text
    The literature suggests that floral nectar acts principally to attract pollinator visitation (and/or revisitation), thereby enhancing plant reproductive success. However, floral nectar also manipulates pollinator behaviour during and immediately following plant visits, affecting pollen transfer, and plant reproduction. I argue that floral nectar should really be viewed as a pollinator manipulant rather than attractant, thus potentially explaining why its concentration is not generally high and why it decreases with increasing pollinator body size. Otherwise, such patterns may remain mysterious and unexplained.3 page(s
    corecore