1,027 research outputs found

    Flight experience with the decelerating noise abatement approach

    Get PDF
    The noise of older aircraft can be reduced in two principal ways: retrofitting the aircraft with a quiet propulsion system, and changing the flight operational procedures used in flying the aircraft. The former approach has already proved to be expensive, time consuming, and difficult to implement even though low-noise propulsion system technology exists. The latter method seems to hold promise of being less expensive and easier to implement. One operational technique which might reduce the noise beneath the landing approach path is the decelerating approach. This technique requires intercepting the 3 deg approach path at a relatively high speed with the aircraft in the cruise configuration, then reducing the thrust to idle and allowing the aircraft to decelerate along the 3 deg approach path. As the appropriate airspeed is achieved, the landing flaps and landing gear are deployed for a normal flare and landing. Because the engines, which are the predominant noise source on landing approach, are at idle thrust, a significant reduction in the noise beneath the approach path should be realized

    An experimental investigation of the flap-lag stability of a hingeless rotor with comparable levels of hub and blade stiffness in hovering flight

    Get PDF
    An experimental investigation of the flap-lag stability of a hingeless rotor in hovering flight is presented and discussed. The rotor blade and hub configuration were selected such that the hub and blade had comparable levels of bending stiffness. Experimental measurements of the lag damping were made for various values of rotor rotational speed and blade pitch angle. Specifically at a blade pitch angle of 8 deg at three-quarters radius, the lag damping was determined over a range of rotational speeds from 200 RPM to 320 RPM and also over a range of blade pitch angles from 0 deg to 8 deg

    MACHINE LEARNING STATISTICAL DETECTION OF ANOMALIES USING NETFLOW RECORDS

    Get PDF
    NetFlow is a network protocol system that is used to represent an overall summary of computer network conversations. A NetFlow record can convert previously captured packet captures or obtain NetFlow session data in real time. This research examines the use of machine-learning techniques to identify anomalies in NetFlow records and classify malware behavior for further investigation. The intent is to identify low-cost solutions leveraging open-source software capable of deployment on computer hardware of currently in-use data networks. This work seeks to determine whether expert selection of features can improve machine-learning detection algorithm performance and evaluate the trade-offs associated with eliminating redundant or excessive numbers of features. We identify the Random Forest algorithm as the strongest single algorithm across three of four metrics, with our chosen NetFlow features cutting the testing and training times in half while incurring minor reductions in two metrics. The experiment demonstrates that the chosen NetFlow features are sufficiently discriminative to detect attacks with a success rate higher than 94%.NCWDGLieutenant, United States NavyApproved for public release. Distribution is unlimited

    The four leading arms of the Magellanic Cloud system

    Full text link
    The Magellanic Cloud System (MCS) interacts via tidal and drag forces with the Milky Way galaxy. Using the Parkes Galactic All-Sky Survey (GASS) of atomic hydrogen we explore the role of drag on the evolution of the so-called Leading Arm (LA). We present a new image recognition algorithm that allows us to differentiate features within a 3-D data cube (longitude, latitude, radial velocity) and to parameterize individual coherent structures. We compiled an HI object catalog of LA objects within an area of 70 degr x 85 degr (1.6 sr) of the LA region. This catalog comprises information of location, column density, line width, shape and asymmetries of the individual LA objects above the 4-sigma threshold of Delta T_b simeq 200 mK. We present evidence of a fourth arm segment (LA4). For all LA objects we find an inverse correlation of velocities v_GSR in Galactic Standard of Rest frame with Magellanic longitude. High-mass objects tend to have higher radial velocities than low-mass ones. About 1/4 of all LA objects can be characterized as head-tail (HT) structures. Using image recognition with objective criteria, it is feasible to isolate most of LA emission from the diffuse Milky Way HI gas. Some blended gas components (we estimate 5%) escape detection, but we find a total gas content of the LA that is about 50% higher than previously assumed. These methods allow the deceleration of the LA clouds to be traced towards the Milky Way disk by drag forces. The derived velocity gradient strongly supports the assumption that the whole LA originates entirely in the Large Magellanic Cloud (LMC). LA4 is observed opposite to LA1, and we propose that both arms are related, spanning about 52kpc in space. HT structures trace drag forces even at tens of kpc altitudes above the Milky Way disk.Comment: 12 pages, 7 figures, 2 tables, accepted for publication Astronomy & Astrophysics 201

    Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions

    Get PDF
    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement concepts to create realistic pseudo-datasets. Pseudo-data are averaged over coarse model grid cell areas to better understand the ability of measurements to characterize CO2 distributions and spatial gradients on both short (daily to weekly) and long (monthly to seasonal) time scale

    Energetics and Mechanism of Drug Transport Mediated by the Lactococcal Multidrug Transporter LmrP

    Get PDF
    The gene encoding the secondary multidrug transporter LmrP of Lactococcus lactis was heterologously expressed in Escherichia coli. The energetics and mechanism of drug extrusion mediated by LmrP were studied in membrane vesicles of E. coli. LmrP-mediated extrusion of tetraphenyl phosphonium (TPP+) from right-side-out membrane vesicles and uptake of the fluorescent membrane probe 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) into inside-out membrane vesicles are driven by the membrane potential (Δψ) and the transmembrane proton gradient (ΔpH), pointing to an electrogenic drug/proton antiport mechanism. Ethidium bromide, a substrate for LmrP, inhibited the LmrP-mediated TPP+ extrusion from right-sideout membrane vesicles, showing that LmrP is capable of transporting structurally unrelated drugs. Kinetic analysis of LmrP-mediated TMA-DPH transport revealed a direct relation between the transport rate and the amount of TMA-DPH associated with the cytoplasmic leaflet of the lipid bilayer. This observation indicates that drugs are extruded from the inner leaflet of the cytoplasmic membrane into the external medium. This is the first report that shows that drug extrusion by a secondary multidrug resistance (MDR) transporter occurs by a “hydrophobic vacuum cleaner” mechanism in a similar way as was proposed for the primary lactococcal MDR transporter, LmrA.

    Physical Properties of Complex C Halo Clouds

    Get PDF
    Observations from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey of the tail of Complex C are presented and the halo clouds associated with this complex cataloged. The properties of the Complex C clouds are compared to clouds cataloged at the tail of the Magellanic Stream to provide insight into the origin and destruction mechanism of Complex C. Magellanic Stream and Complex C clouds show similarities in their mass distributions (slope = -0.7 and -0.6, respectively) and have a common linewidth of 20 - 30 km/s (indicative of a warm component), which may indicate a common origin and/or physical process breaking down the clouds. The clouds cataloged at the tail of Complex C extend over a mass range of 10^1.1 to 10^4.8 solar masses, sizes of 10^1.2 to 10^2.6 pc, and have a median volume density of 0.065 cm^(-3) and median pressure of (P/k) = 580 K cm^{-3}. We do not see a prominent two-phase structure in Complex C, possibly due to its low metallicity and inefficient cooling compared to other halo clouds. From assuming the Complex C clouds are in pressure equilibrium with a hot halo medium, we find a median halo density of 5.8 x 10^(-4) cm^(-3), which given a constant distance of 10 kpc, is at a z-height of ~3 kpc. Using the same argument for the Stream results in a median halo density of 8.4 x 10^(-5) x (60kpc/d) cm^(-3). These densities are consistent with previous observational constraints and cosmological simulations. We also assess the derived cloud and halo properties with three dimensional grid simulations of halo HI clouds and find the temperature is generally consistent within a factor of 1.5 and the volume densities, pressures and halo densities are consistent within a factor of 3.Comment: Accepted for publication in AJ. 54 pages, including 6 tables and 16 figure

    Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = -1

    Get PDF
    We prove that the hyperelliptic Torelli group is generated by Dehn twists about separating curves that are preserved by the hyperelliptic involution. This verifies a conjecture of Hain. The hyperelliptic Torelli group can be identified with the kernel of the Burau representation evaluated at t = −1 and also the fundamental group of the branch locus of the period mapping, and so we obtain analogous generating sets for those. One application is that each component in Torelli space of the locus of hyperelliptic curves becomes simply connected when curves of compact type are added

    The Relationship Between Baryons and Dark Matter in Extended Galaxy Halos

    Full text link
    The relationship between gas-rich galaxies and Ly-alpha absorbers is addressed in this paper in the context of the baryonic content of galaxy halos. Deep Arecibo HI observations are presented of two gas-rich spiral galaxies within 125 kpc projected distance of a Ly-alpha absorber at a similar velocity. The galaxies investigated are close to edge-on and the absorbers lie almost along their major axes, allowing for a comparison of the Ly-alpha absorber velocities with galactic rotation. This comparison is used to examine whether the absorbers are diffuse gas rotating with the galaxies' halos, outflow material from the galaxies, or intergalactic gas in the low redshift cosmic web. The results indicate that if the gas resides in the galaxies' halos it is not rotating with the system and possibly counter-rotating. In addition, simple geometry indicates the gas was not ejected from the galaxies and there are no gas-rich satellites detected down to 3.6 - 7.5 x 10^6 Msun, or remnants of satellites to 5-6 x 10^{18} cm^{-2}. The gas could potentially be infalling from large radii, but the velocities and distances are rather high compared to the high velocity clouds around the Milky Way. The most likely explanation is the galaxies and absorbers are not directly associated, despite the vicinity of the spiral galaxies to the absorbers (58-77 kpc from the HI edge). The spiral galaxies reside in a filament of intergalactic gas, and the gas detected by the absorber has not yet come into equilibrium with the galaxy. These results also indicate that the massive, extended dark matter halos of spiral galaxies do not commonly have an associated diffuse baryonic component at large radii.Comment: Accepted by AJ, 33 pages preprint format, see http://www.astro.lsa.umich.edu/~mputman/putman1.pdf for a higher resolution versio

    High-resolution imaging of compact high-velocity clouds (II)

    Get PDF
    We have imaged five compact high-velocity clouds in HI with arcmin angular- and km/s spectral-resolution using the WSRT. Supplementary total-power data, which is fully sensitive to both the cool and warm components of HI, is available for comparison for all the sources, albeit with angular resolutions that vary from 3' to 36'. The fractional HI flux in compact CNM components varies from 4% to 16% in our sample. All objects have at least one local peak in the CNM column which exceeds about 10^19 cm^-2 when observed with arcmin resolution. It is plausible that a peak column density of 1-2x10^19 cm^-2 is a prerequisite for the long-term survival of these sources. One object in our sample, CHVC120-20-443 (Davies' cloud), lies in close projected proximity to the disk of M31. This object is characterized by exceptionally broad linewidths in its CNM concentrations (more than 5 times greater than the median value). These CNM concentrations lie in an arc on the edge of the source facing the M31 disk, while the diffuse HI component of this source has a position offset in the direction of the disk. All of these attributes suggest that CHVC120-20-443 is in a different evolutionary state than most of the other CHVCs which have been studied. Similarly broad CNM linewidths have only been detected in one other object, CHVC111-07-466, which also lies in the Local Group barycenter direction and has the most extreme radial velocity known. A distinct possibility for Davies' cloud seems to be physical interaction of some type with M31. The most likely form of this interaction might be the ram-pressure or tidal- stripping by either one of M31's visible dwarf companions, M32 or NGC205, or else by a dark companion with an associated HI condensation.Comment: 12 pages, 11 (low res.) png figs, accepted for pub. in A&
    corecore