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ABSTRACT 

 NetFlow is a network protocol system that is used to represent an overall 

summary of computer network conversations. A NetFlow record can convert previously 

captured packet captures or obtain NetFlow session data in real time. This research 

examines the use of machine-learning techniques to identify anomalies in NetFlow 

records and classify malware behavior for further investigation. The intent is to identify 

low-cost solutions leveraging open-source software capable of deployment on computer 

hardware of currently in-use data networks. 

 This work seeks to determine whether expert selection of features can improve 

machine-learning detection algorithm performance and evaluate the trade-offs associated 

with eliminating redundant or excessive numbers of features. We identify the Random 

Forest algorithm as the strongest single algorithm across three of four metrics, with our 

chosen NetFlow features cutting the testing and training times in half while incurring 

minor reductions in two metrics. The experiment demonstrates that the chosen NetFlow 

features are sufficiently discriminative to detect attacks with a success rate higher than 

94%. 
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CHAPTER 1:
Introduction

1.1 Overview
This thesis focuses on improving network security, through open source software compat-
ible with currently fielded equipment, against Denial of Service (DoS) attacks targeting
Department of Defense networks. We identified suitable, publicly available datasets that
simulate DoS and other application layer attacks. We then selected and compared the ef-
fectiveness of default and adapted machine learning algorithms to improve the ability to
differentiate attacks from benign traffic.

1.2 Motivation and Objective
DoS attacks are a threat against two pillars of cybersecurity: integrity of data and availability
of service.Attacks are accomplished by preventing legitimate user access through exhausting
a given resource or overloading network infrastructure. DoS attacks are used in a variety
of ways: for reconnaissance of network defenses, as a weapon to prevent legitimate user
access, or a distraction to divert resources away from other cyberattacks. While these
attacks have been around for decades, DoS attacks will remain very common and are part
of cybercrime-as-a-service [1].

The Naval Higher Education Information Technology Consortium (NHEITC) is responsible
for providing cybersecurity to the four higher learning schools, Naval Postgraduate School
(NPS), Defense Language Institute, Naval War College, and the U.S. Naval Academy. Each
school is responsible for defending data assets, isolating intrusion, and detecting attacks.
We chose to target Application Layer 7 (L7) attacks is because at NPS, most attacks are
conducted by cybercriminals and novice attackers, with application layer attacks being the
most common [2]. DoS attacks are a cheap and effective attack vector and, when successful,
consume resources and man-hours to determine the scope of the attack and remediate
damage caused to internal infrastructure. While there are tools that are effective in stopping
attacks, such as a Web Application Firewall (WAF), the cost of services becomes expensive

1
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for the amount of traffic these institutions experience.

The objective of this thesis is to provide one-step detection of DoS attacks using NetFlow
features and machine learning algorithms. As seen in Figure 1.1, a Cisco network flow is
a summary of packet capture (pcap) data which is intended to provide a high-level view
of network traffic. This process is less hardware intensive since administrators can choose
specific flow attributes to collect instead of entire packets. Our approach analyzes NetFlow
version 9 features to determine the most indicative features of application layer DoS and
other web attacks in order to generate the highest accuracy from an array of ML algorithms.
We identify these features using baseline datasets that simulate realistic network traffic. We
then examine the extent to which feature selection centered on attack characteristics effect
computation time and accuracy, as compared to using full feature sets.

Figure 1.1. Packet Collection to Flow Generation. Source: [3].

1.3 Methodology Overview
To guide our approach, we employed the Cross-Industry Process for Data Mining
(CRISP-DM) methodology, as seen in Figure 1.2, as the reference model for our research.
The phases of CRISP-DM are:

1. Business understanding: In Chapters 1 and 2, we explore the nature of DoS attacks
and how machine learning can be used to classify attacks. We assess some current
methods which will define our success criteria in Section 2.1, and select the tools and
algorithms we will use in Section 2.3 and 2.4.

2
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2. Data understanding: Additionally, in Chapter 2, we review currently available data
sources and describe the datasets that were chosen for the experiment.

3. Data Preparation: In Chapter 3, we describe the process to prepare the dataset for
modeling, which consists of the following steps: data selection, data cleaning, data
integration, data formatting, and how data will be split for training and testing.

4. Modeling: In Chapter 4, we apply our selected algorithms to conduct our experiment
and record the results.

5. Evaluation: In Section 4.3, we interpret the results based on which algorithms meet
the success criteria, and compare algorithm performance using our reduced feature
set.

6. Deployment: In Chapter 5, we review our project and discuss future work.

Figure 1.2. The CRISP-DM 6 Stage Life Cycle. Source: [4].
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1.4 Overview of Targeted Attacks
For this research we focus on the attacks targeting the seventh layer of the Open Systems
Interconnection (OSI) model, known as L7. This layer is responsible for end user interaction
with web application services, such as email or web browsing. Some common protocols at
this level are Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Internet
RelayChat (IRC), andDomainNameSystem (DNS).Cyberattacks at this layer target specific
applications or vulnerabilities which can occur due to overloading of specific application
functions or mis-configuration of servers. We chose to target these attacks because the Open
Web Application Security Project (OWASP) Foundation [5] has studied the effectiveness of
these attacks and concluded application layer attacks have higher obscurity, higher efficiency,
and higher lethality compared to other types of DoS attacks.

DoS attacks can be used to hide other legitimate attacks. While DoS attacks utilize appli-
cation protocols, other application layer attacks can occur through manipulating databases
or utilizing scripts and queries. As such, in this work we also study the impact on detection
accuracy of DoS attacks in the presence of other L7 attacks. This work specifically seeks
to detect the following types of L7 DoS attacks: HTTP Flood, Slowloris, and R.U.D.Y. To
examine the impact other application layer attacks have on detection of these DoS attacks,
we also tested detection in the presence of Structured Query Language (SQL) injects, Cross
Site Scripting (XSS) attacks, and brute force attacks.

1.4.1 HTTP Flood
HTTP flood attacks are a form of volumetric DoS, where an attacker attempts to overwhelm
services with high volumes of malicious traffic. This type of attack is successful when a
service is no longer able to respond to other users. The two most common types of HTTP
flood attacks are:

1. HTTP GET attacks: These attacks consume server resources by posing as normal
users requesting access to a web page. The difficulty of detection comes from the use
of standard URL requests, which look no different from normal traffic.

2. HTTP POST attacks: As explained in RFC 7231 [6], "POST requests perform
resource-specific processing on requested payloads." These attacks take advantage
of the Content-Length field of an HTTP header. Because it is a legitimate request to

4
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a server, resources are set aside for the incoming message.

1.4.2 Slowloris
Slowloris is a L7 cyberattack tool that performs "low and slow" DoS attacks, where an
attacker attempts to overwhelm services by maintaining open HTTP connections, as shown
in Figure 1.3. Similar to an HTTP GET attack, this attack takes advantage of GET request
headers and is effective because it mimics slow internet connectivity and gradually occupies
server resources until all resources have been used.

Figure 1.3. Methodology of the Slowloris Attack Tool. Source: [7].

1.4.3 R.U.D.Y Attacks
Similar to Slowloris, the L7 attack tool, "R U Dead Yet?" performs DoS attacks by sending
HTTP POST packet requests slowly. Because there is no minimum speed a web server can
support, this attack will use up server resources as it waits for requested information of the
given form, such as logging in or uploading a document.

5
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1.5 Scope
The scope of this research is constrained to utilizing known application layer DoS attacks
to identify attacks using NetFlow records. We chose to use only open source software
compatible with currently fielded equipment, with the intent of identifying solutions that
are easy to implement and have no additional cost considerations.

1.6 Research Questions
In this work, we examined the following research questions:

1. How has ML been used to classify L7 DoS attacks?
2. Does ML algorithm performance vary when detecting DoS attacks alone vs in the

presence of other attack vectors?
3. What features does ML assess as most important for each attack type?
4. Can expert selection be used to eliminate redundant or unnecessary features initially

selected by an ML algorithm?
5. What are the advantages and disadvantages of this reduced feature set? How does the

reduced feature set compare to the full feature set at detecting attacks/false alarms?
6. Which additional features would lead to the greatest reduction of false alarms from

benign traffic?
7. Can expert selection be used to eliminate redundant or unnecessary features initially

selected by an ML algorithm?

1.7 Organization
The thesis is organized as follows. Chapter 2 provides a literature review of past research
efforts, an overview of machine learning algorithms and publicly available datasets, and
discuss the analytical tools we used. Our methodology and experimental design for our work
is presented in Chapter 3. The results of the experiment and analysis are found in Chapter
4. Chapter 5 concludes with a summary of our findings and recommendations for future
work.

6
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CHAPTER 2:
Literature Review and Machine Learning

This chapter describes the most pertinent prior work from a large pre-existing body of
network anomaly detection. We begin with analyzing works that focus only on L7 DoS
attacks and then look at research that focus on L7 DoS attacks in the presence of other
L7 attacks. Finally, we discuss the benefits and limitations of publicly available benchmark
datasets, discuss the factors that went into tool analysis, and provide an overview of the
machine learning algorithms that we use to conduct our experiments.

2.1 Literature Review
Since this research focuses on improving network security, it is important to analyze the
methodology of previous efforts. An overview of what we believe to be the most pertinent
research can be found in the beginning of each subsection, as seen in Table 2.1 and Table
2.2. We first consider how others have utilized NetFlow to detect only DoS attacks.

2.1.1 Single Attack Types

Table 2.1. Summary of Literature Review Based on Only DoS Attacks.
Research Work Features Used Detection Approach Strengths Limitations

Kemp et al. [8]

Protocol, Packets, Bytes, TCP flags,
Initial flags, Session flags, Attributes,

Packets/s, Bytes/s, Bytes/packet, Duration,
Label

Machine Learning
High accuracy for detection of Slow
Read attack traffic, utilizing live web

server data

Only tested for simple cases of
this attack. Did not include other

types of anomalies.

Feng et al. [9]

Bytes/message, Traffic size from IP block,
Average behavior interval, Average absolute
deviation of behavior interval, Number of

messages sent/time, Number of similar received
messages, Request consumption, and Ratio of

incoming to outgoing traffic

Reinforcement learning

Self-evolving according to interactions
with the environment, actively minimizes
false positive rates and maximizes true

positive rates to prevent attacks.

Initial training based upon new
environmental factors heavily

impact accuracy.

Beckett et al. [10]

Number of Databases: Opened, Closed,
Queried, Commits; Total database query time,

average query time per database open,
average number of queries per database open

Novel resource consumption
sensor and C4.5 decision tree

Can detect sophisticated DDoS attackers
targeting large database resources.

Proposed system is only designed
for use while under a DDoS attack.

Kemp et al. [8] [11] studied the effectiveness of eight supervised Machine Learning (ML)
techniques, focusing on 11 NetFlow features chosen to detect SlowHTTPDoS attacks. Their

7
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experimental design focused on an infected machine targeting a single victim using only
a SlowHTTP DoS attack that lasted one hour. They concluded that Random Forest (RF)
performed better than other models. Their experiment showed a high accuracy against DoS
attacks, but only tested simple cases of the attacks. This work studies similar attack vectors
and builds upon it with other L7 attacks.

Feng et al. [9] utilized NetFlow data to mitigate Distributed Denial of Service (DDoS)
attacks using reinforcement learning. Rather than using existing public datasets, they con-
structed a simulation environment and generated attacks using various DDoS tools. They
shows that through reinforcement learning, using features designed specifically in his exper-
iment, L7DDoS attack detection and themitigation accuracy can bemaintained independent
of system load. Their method showed a 98.73%DDoS attack detection rate. Our work shows
that we can achieve this level of detection through the use of our chosen features, explained
more in Chapter 3.

Beckett et al. [10] proposed a new sensor that analyzes net flow data to classify L7 DDoS
attacks. The system used 30-second data windows, a decision tree classifier, and empirically
chose seven features which focused on database resources. Instead of using a benchmark
dataset, they used a test bed with seven days of real traffic logs from a private cloud envi-
ronment. Their method detected attacks with an overall accuracy of 97.9%, although their
team acknowledged higher false positive results would occur in benign-only traffic. We
show that the use of our reduced feature set would produce similar overall accuracy under
all circumstances.

2.1.2 Multiple Attack types
Recent attacks have shown that DoS and web-based attacks are often coordinated activities
[1]. As such, we examine the methodology that researchers have used to detect DoS in the
presence of other L7 attacks.

8
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Table 2.2. Summary of Literature Review Based on DoS Attacks in the
Presence of Other L7 Attacks.

Research Work Features Used Detection Approach Strengths Limitations

Zoppi et al. [12]
Varied depending on dataset, but most used features
were: Duration of connection, Number of bytes

exchanged, Number of packets
Machine Learning

Studied the effectiveness of unsupervised
algorithms on zero-day attacks.

Current threat landscape is not
reflected in all datasets.

Ahmin et al. [13] 79 features, Full list found in the Appendix
Novel intrusion detection system
utilizing hierarchical classification

Proposed IDS detected DoS attacks better
than other machine learning methods.

Hierarchical model setup
and how the features were used

within the model was not explained.

Borisenko et al. [14]
Amount of bytes, Amount of packets, Source IP address,
Source IP port, Destination IP address, Destination IP port

Machine learning
Proposed architecture can be used to

strengthen cloud defense.
Only tested for simple cases of external

and internal attacks.

Ullah et al. [15]

Source IP address, Destination IP address, Destination Port,
Protocol, Flow duration, Flow bytes/s, Flow Packets/s, Flow
IAT mean, Flow IAT std, Flow IAT max, Flow IAT min, Fwd
IAT total, Fwd IAT mean, Subflow Fwd Packets, Subflow
Fwd bytes, Subflow Bwd packets, Subflow Bwd bytes

Novel two-level flow
detection system using

machine learning

Two-level system can enhance security of
Internet of Things devices.

Empirical selection of features and
criteria used for models selection

were not explained.

Zoppi et al. [12] employed the use of 17 unsupervised ML algorithms testing the Informa-
tion Gain feature selection strategy on 11 publicly available datasets. His research found
that regardless of dataset, three features were selected a majority of the time: duration of
connection, number of bytes exchanged, and number of packets. While his experiment was
not focused on any singular type of attack, 9 of his 11 datasets did include DoS of some kind,
which could explain the features found. While not solely focused on the same attacks, we
use his method of feature selection to determine common NetFlow features of our studied
attacks. Comparing attack types, irrespective of dataset, he concluded an average Matthews
Correlation Coefficient (MCC) score of 0.50 and overall accuracy of 80%.

Ahmin et al. [13] proposed a hybrid Intrusion Detection System (IDS) system that used three
supervised models to conduct multi-class identification. By utilizing 79 NetFlow features,
their team analyzed the effectiveness of hierarchical classification of anomalies against all
attacks found in the CIC-IDS 2017 dataset. They concluded their method could classify DoS
attacks with high accuracy, greater than 93%, but classification of other application layer
attacks was average compared to other models. Our work shows that our reduced feature set
would produce similar one-step classification results.

In cloud environments, Borisenko et al. [14] studied the performance of four supervisedML
algorithms to detect internal and external application-layer DDoS attack. Rather than using
a baseline dataset, Borisenko created two virtual networks and simulated benign traffic and
the DDoS attacks. Their research examined the impact of six NetFlow features using data
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mining techniques, and determined that a decision tree algorithm performed best with a
False Positive Rate (FPR) of 0.05%. Their research concluded that performance was not
significantly affected whether the compromised systems which launched the application
layer attacks were located within network or outside the network. This makes sense because
their features focused on flow identifiers, such as source/destination Internet Protocol (IP)
addresses and tested only simple cases of attacks. Our work shows that DoS attacks can be
found independent of these features.

In Internet of Things (IoT) environments, Ullah et al. [15] proposed using an anomaly
based, two-level flow detection system to detect DDoS attacks and other application layer
attacks within IoT networks. Using a benchmark dataset, they empirically selected 17
features. Although their research did not provide a detailed performance breakdown of su-
pervised learning algorithms for either layer one or two, the authors final results achieved an
overall classification accuracy of 98.80%.Ourwork shows similar results using less features.

As seen from the literature review, there are many proposed methods to detect DoS at-
tacks. While some ways are more successful, the selection of dataset, features, and ML
algorithm play a significant factor in classification accuracy. We consider our reduced fea-
tures set a success if it maintains a higher than 94% DoS detection rate, the median of
the peer study performance, while keeping false alarms to a minimum. The next section
provides a deeper look at the datasets we used.

2.2 Dataset Analysis
Publicly available datasets are a useful tool in determining the usefulness of our experiment.
Known as benchmark datasets, they provide a useful comparison tool for researchers to
assess their design against other methods. In most cases, these datasets label the type of
traffic that is recorded as benign or attack. Labeling facilitates comparing and contrasting
the effectiveness of the various algorithms through our chosen metrics.

In ML applications, each data point is commonly called an instance or case. Each case has
a set of values associated with it, known as features. The analyzed datasets have the features
listed by column, with each case occupying a new row. The number of features depends on
the software that is used to record and extract data.
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We investigated many different datasets (approximately 11) but selected the most recent
and attack specific datasets for further analysis. The following benchmark datasets were
examined for use in the experimental design: CTU-13, CIDDS-001, CIDDS-002, CIC-IDS
2017, CSE-CIC-IDS 2018, and CIC-IDS 2019. An overview of these datasets can be found
in Figure 2.3. The criteria for use in this experiment were as follows: first, the dataset needed
to contain L7 DoS attacks as well as other attacks. Second, as the nature of DoS attacks
have changed over the years, only datasets that contained attack profiles currently seen today
were used. Finally, the network topology should approximate a real world network topology
closely related to what is commonly seen today. Give these criteria, the datasets that were
selected are a combination of attacks from CIC-IDS 2017 and CSE-CIC-IDS 2018.

Table 2.3. Overview of Publicly Available Datasets.

2.2.1 CTU-13 (2013)
CTU-13 is a dataset of botnet traffic that was captured by the Czech Technical University,
Czech Republic [16]. The dataset consists of botnet traffic mixed with both normal traffic
and background traffic in a real network environment. The dataset includes 13 different
scenarios of nine different attack combinations. Each scenario was recorded in bidirectional
NetFlow format, consisting of 40 features and one of three classification labels. While the
dataset includes some application layer attacks, this dataset was not selected because it did
not look at L7 DoS attacks.
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2.2.2 CIDDS-001 (2017)
CIDDS-001 (Coburg Intrusion Detection Data Set) emulates a small business environment
[17]. The dataset consists of four attacks: Port Scan, Ping Scan, HTTP DoS, and Brute
Force attacks. Each attack targeted an external server or one of four subnets within their
simulated environment. These attacks were executed over the course of 92 scenarios over
a four-week period. The data was captured in unidirectional NetFlow format, consisting of
ten NetFlow features and four classification labels. The features focus on flow identifiers
and flow duration. The limited number of features and attack types led to the exclusion of
this dataset.

2.2.3 CIDDS-002 (2017)
CIDDS-002 emulates a small business environment, focusing solely on attacks against
the three subnets [17]. The dataset consists of four attacks (Port Scan, Ping Scan, HTTP
DoS, and Brute Force) against three virtual networks. These attacks were executed over 43
different scenarios over a two-week time period. The data was captured in unidirectional
NetFlow format, consisting of ten NetFlow features and four classification labels. While
technically an updated version of the previous dataset, CIDDS-002 has the same limitations
of lack of features and attack types.

2.2.4 CIC-IDS 2017
CIC-IDS-2017 is an intrusion detection evaluation dataset that emulates naturalistic, benign
background traffic [18]. Eight types of malicious attacks were executed against a virtual net-
work. The data was captured over a period of five days, with each day hosting a combination
of attacks. Extraction was done in bi-directional NetFlow format using the publicly available
CICFlowMeter software. Seventy-nine features were calculated; a full list of features can
be found in the Appendix. Because of the wide variety of attacks, the DoS attack data was
included for use in our experiment.

2.2.5 CSE-CIC-IDS 2018
CSE-CIC-IDS 2018 is an Intrusion Protection System (IPS)/IDS dataset that emulates real
traffic and is labeled as either benign data or an attack type [18]. Unlike CIC-IDS 2017, this
dataset was a joint effort by the Communications Security Establishment and the Canadian
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Institute for Cybersecurity to study anomaly detection on the AWS computing platform,
seen in Figure 2.1. The entire dataset contains seven different attacks and was extracted
using an updated version of CICFlowMeter, resulting in 84 features. From this dataset, we
use the full DoS and web attack data.

Figure 2.1. Network Topology of CSE-CIC-IDS 2018. Source: [18].

2.2.6 CIC-DDOS 2019
CIC-DDOS 2019 is a DDoS evaluation dataset containing benign data and most common
DDoS attacks, mostly focused on reflection and exploitation attacks [19]. The data was
captured over a period of two days, recorded in bidirectional NetFlow format, and contains
12 different DDoS attacks. This dataset was not chosen due to the low volume ofWeb DDoS
traffic.

To conclude, there are many datasets that are available for use. While each dataset has
its advantages, a common disadvantage is imbalanced data and feature availability. Due to
the assumptions each dataset made on how an attack was performed, there is an imbalance
between recorded benign traffic and attack traffic. This data imbalance can affect algorithm
performance towards theminority class, which inmost cases is the attack traffic. The features
available for study also vary greatly, as each dataset creator uses different software tools and
underlying equations when exporting the flows. However, we blend the DoS attacks from
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the selected datasets to show detection is determined by features common to the DoS attack
itself, not from where an attack is originating from.

2.3 Tool Comparison
Similarly, while dataset selection is important, the data analysis software choice also plays
a critical role for our experiment. Since one of our goals is to use open source software in
conjunction with already fielded equipment, the software should be able to: load datasets in
comma separated value (csv) format, execute the machine learning algorithms, and provide
results in an easily understood manner. Ease of use and simplicity of user interfaces were
also considered.

2.3.1 R
R is an open source programming language mainly used for statistical analysis [20]. The
R community is active and the ecosystem provides a large amount of machine learning
algorithms. R provides the tools needed for data preparation, analysis, and experimental
reporting. The disadvantages are a steep learning curve and poor memory management.
Because the programs and functions are spread across different packages, R is slower to run
than some of the other programs listed.

2.3.2 Python
Python is a computer language that can be used for statistical analysis and machine learning
[21]. One of the advantages of Python is that it is an open-source language, so there are a
wide variety of libraries and packages that are freely available. The coding is interpreted
line by line, leading to longer execution times and large memory usage. With the many
databases available for use in Python, it can be hard to choose which packages to use for
experimentation.

2.3.3 MATLAB
MATLAB is a programming platform that contains application toolboxes that can perform
a variety of machine learning tasks.MATLAB claims it is capable of handling big data and
that the processing and extraction techniques allow for iterative tuning on machine learning
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algorithms [22]. However, the limited big data packages make this tool difficult to compare
results to other findings.

2.3.4 Weka
Waikato Environment for Knowledge Analysis (Weka) is open-source software that contains
a library of machine learning algorithms used for data mining [23]. The main advantage is
the easy-to-use graphical user interface and the ability to easily compare algorithms. The
disadvantage is the amount of memory the program requires to process large datasets. After
experimenting with the various tools,Wekawas chosen due to the ease of use, short learning
curve, and well-designed features. An example Weka graphical user interface is shown in
Figure 2.2.

Figure 2.2. Example of Weka’s Graphical User Interface
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The Weka analysis process starts with loading the dataset as a csv file and performs error
checking and initial summarization of each column. Although Weka is able to use many
different data attributes, such as nominal and numerical data, not every algorithm supports
every type of data. This makes the pre-processing, described in Chapter 3, very important
for ensuring the algorithm can accept the dataset. After Weka runs the algorithms, the user
interface provides easy-to-read information regarding the results, as shown in Figure 2.3.
The user interface is explained in more detail in Chapter 3.

Figure 2.3. Example of Weka’s Classifier Output

2.4 Algorithm Overview
While there are a variety of tools that can be used to conduct statistical analysis and anomaly
detection, a frequent common factor is the usage of machine learning algorithms. Machine
learning is a subset of artificial intelligence, which uses various programming techniques
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to process data and extract useful information. There are three types of machine learning
algorithms: supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is used to find relationships between various features. Supervised
learning algorithms are trained on labeled datasets to create a basis for making predic-
tions of unlabeled data, which an algorithm then uses to assign a class label. Unsupervised
learning uses unlabeled data to find hidden relationships that may not be initially seen.
Unsupervised learning classifies input data into groups and assigns class labels based on
groupings. Semi-supervised learning takes a middle approach and uses a small amount of
labeled data to help predict unlabeled data. Reinforcement learning analyzes reactions in
response to environment inputs. Some commonly used algorithms for each method can be
found in Figure 2.4.

Figure 2.4. Overview of Machine Learning Methods. Source: [24].
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We utilize supervised learning as the basis for our research, because as signatures for DoS
attacks change over time, new baselines can be used to update training data. This post
deployment process is key to maintaining or improving detection of anomalies over time.
Supervisedmachine learning based approaches allow for operators to analyze small samples
of new attacks and re-train algorithms once deployed.

Each machine learning algorithm has strengths and weaknesses, with the trade-off usu-
ally being accuracy or speed. Because there is no single algorithm that is best suited for
all problems, four supervised classification algorithms were chosen for testing the datasets:
RF, K-Nearest Neighbor (K-NN), Naïve Bayes (NB), and Support Vector Machine (SVM).
These four algorithms are well established and are commonly used in literature for anomaly
detection. For a better understanding of the Random Forest model, decision trees were also
studied.

While there are other supervised learning classification algorithms, such as logistic regres-
sion or neural networks, the research using these algorithms did not appear often during
literature review. A study of the top 10 algorithms in data mining for NxN comparisons
showed the usefulness of our chosen models [25]. The four chosen algorithms represent a
balance of speed vs accuracy, with SVM, RF, and K-NN focusing on accuracy while NB
focuses on speed.

2.4.1 Decision Tree
Decision trees are represented by a series of binary splits based upon evaluation of charac-
teristics of the data, with the terminal nodes determining the classification label. The benefit
of this method is that it is easy to interpret the decisions the algorithm is making, as shown
in Figure 2.5.
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Figure 2.5. Example of a Decision Tree Splitting and Class Label Output

The interpretation becomes more complicated with larger trees; however, techniques such
as boosting and bagging help improve classification. Boosting is a method that repeatedly
trains a model and provides a weight for each prediction and test. Bagging is a method that
trains classifiers on partitions of training data, with final classification being determined by
majority vote. The Weka algorithm J48 is the implementation of Quinlain’s original C4.5
decision tree algorithm [26].

2.4.2 Random Forest
The Random Forest algorithm is an ensemble classifier consisting of a collection of decision
trees that uses a random selection of features at each node to determine binary splits
[27]. Individual trees are constructed and create outputs, with the final classification being
decided through majority voting, as seen in Figure 2.6. This algorithm is an effective tool in
classification, since the large number of trees that are used reduces over-fitting. The Weka
algorithm RandomForest() is the implementation of Breiman’s original algorithm, with the
default settings specified as bagging.
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Figure 2.6. Example of Random Forest Output. Source: [28].

2.4.3 Support Vector Machine
The Support Vector Machine algorithm is a supervised learning method that can be used
for classification analysis [29]. Given a set of training examples, a SVM training algorithm
builds a model that assigns new examples to a category. The algorithm maps training data
to points in space, attempting to maximize the width between two categories, and classifies
testing samples based on where they fall [29]. In Weka, the SMO algorithm implements
sequential minimal optimization using polynomial kernels.

Using SVM for mutli-class scenarios, classification is solved using pairwise classifica-
tion, also known as 1 vs 1. In this approach, the classifier uses < ∗ (< − 1)/2 hyperplanes,
with< being equal to the number of classes. Using this approach, a multi-class classification
problem is changed into one binary classification problem for each class. In this case, the
SMO algorithm divides the flows into the following problem sets:

• Benign vs DoS
• Benign vs SQL

20

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



• Benign vs Web Attack
• Benign vs XSS
• DoS vs SQL
• DoS vs Web Attack
• DoS vs XSS
• SQL vs Web Attack
• SQL vs XSS
• Web Attack vs XSS

Figure 2.7 shows an example of this with three classes. Using the colors as different classes,
a hyperplane separates each pair of classes while ignoring the third class. A flow is then
classified based upon a majority vote.

Figure 2.7. Example of 1 vs 1 SVM With Three Classes. Source: [30].
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2.4.4 K-Nearest Neighbor
The K-Nearest Neighbor algorithm is a supervised learning method used for classification
analysis [31]. The input consists of the  closest training examples from the training data,
and the output is the class that the testing data is predicted to be. As more data is input, a
case is assigned the class which is most common among its  nearest neighbors [31]. For
our combined dataset, there is a large imbalance between the categories. As such, a smaller
 -value was chosen in relation to the smallest attack type. Using the Weka algorithm IBk,
we empirically choose the value of  to be equal to one and then two.

Figure 2.8. Example of K-NN decision making. Source: [32].

2.4.5 Naïve Bayes
The Naïve Bayes algorithm is a supervised learning method that uses the Bayes’ theorem
to predict a class [33]. The assumption is that a feature is independent of the value of any
other feature. To determine the class of a specific flow, Weka uses the following equation,
where P is the probability, c is the class, and fl is a flow:
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%(2 | 5 ;) = %( 5 ; |2) ∗ %(2)
%( 5 ) (2.1)

The algorithm will assign a class label based on the highest probability class score for each
case. While the weight of any feature can be directly input, theWeka algorithm NaïveBayes
analyzes the training data to automatically determine the weight of each feature.

In summary, literature review has shown that NetFlow features can be used to conduct
anomaly detection. The choices we made on dataset, analysis tool, and algorithm selection
were influenced by the literature and impacted the experimental design. Chapter 3 discusses
our proposed approach to network anomaly detection using supervised learning.

23

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



THIS PAGE INTENTIONALLY LEFT BLANK

24

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



CHAPTER 3:
Experimental Design

Using the CRISP-DM methodology, we design our experiment with the following steps:

1. Prepare the data to use in the experiment. Explore the data, apply feature selection,
and reduce data that is ’NaN’ or listed as infinity.

2. Use Weka to execute the supervised algorithms on our prepared dataset. Default
settings were used on all algorithms to facilitate comparison with future work.

3. Record and collect metric scores for each experimental run.
4. Evaluate results, review process, and determine next steps.

These steps are further explained in Sections 3.1–3.3.

3.1 Data Preparation
As discussed in Chapter 2, we selected the CIC-IDS 2017 and CSE-CIC-IDS 2018 datasets
for this experiment. The flow data was downloaded from the Canadian Institute for Cyberse-
curity website [34] in csv format. The flows for the specific attack types were concatenated
to create a single dataset.

To process the combined dataset in Weka the feature names had to be changed. This is
because the names of some features are repeated, and within Weka each category must be
unique. We changed each feature name to the letter of the corresponding column. We then
removed all rows that had values equal to ‘Infinity’ or ‘NaN’. Because the 2018 dataset
had more flow identifiers than the 2017 dataset, such as ‘Flow ID’, ‘Source IP’, ‘Source
Port’, ‘Destination IP’, ‘Protocol’, and ‘Time Stamp’, these features were deleted to maintain
consistency with the 2017 dataset features.

3.2 Feature Selection
We then pre-processed to remove excessive and unimportant features. As shown in Section
2.1, the selected features play an important role in detecting attacks. The dataset begins with
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a total of 79 features and one classification label. Using the methods described by [12], we
analyzed each attack independently. The Weka search method, Ranker, ranks attributes by
their individual evaluations. This helps us understand the relevance of the features respec-
tive to identifying an attack. Each feature is given a score, ranging from 0 to 1, with larger
values indicating more relevant features.

There are two methods to select features: selecting all features exceeding a given threshold
or selecting the number of features to retain that have the highest rank. The first option
may result in a different number of selected features for each attack, so we choose to look
at the top 10 features. Table 3.1 shows the top ten features of each attack and the average
information gain score. Weka calculates entropy using MDL-based discretization as seen
in (3.1), as described in [35]. Information gain by measuring the entropy of the feature with
respect to the class, as seen in (3.2) [23]. In (3.2), Ig is information gain, c is class, and f is
feature.

� (-) =
:∑
8=1

%(G8);>�(%(G8)) (3.1)

��(2, 5 ) = � (2) − � (2 | 5 ) (3.2)

The closer the average value is to 0, the more we expect to see false negatives and false
positives occurring within that attack type.

Further analysis of the features in each attack showed three sets of features were identical
in terms of values recorded by the NetFlow exporter but had different names. The features
‘Total Length of Fwd Packets’, ‘Total Length of Bwd Packets’, and ‘Fwd Header Packet
Length’ were approximately the same as ‘Subflow Fwd Bytes’, ‘Subflow Bwd Bytes’, and
‘Fwd Header Byte Length’. Although the equations used to generate the values are unavail-
able, it could be that the packet feature values were kept in units of bytes. After removing
these features from DoS attack, the next largest features were input: ‘Backward Packet
Length Mean’, ‘Flow Bytes/s’, and ‘Flow Packets/s’. This brought the average information
gain from 0.815 bits to 0.782 bits for DoS attacks.

A Venn diagram was created to visually map the features of each attack, as seen in the
Appendix. An interesting observation from the ranked features showed that XSS and Brute
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force attacks were separated by a single feature. The overlapping features between these
two attack types could cause an algorithm to mistake XSS attacks as Brute Force, or vice
versa. With XSS attacks having a much smaller average information gain than Brute Force
attacks, we expect that XSS will have more false positives results.

Although Weka defaults to using all features, several ranked features from the other appli-
cation layer attacks overlapped the ranked features from the DoS attack set. The overlapping
features showed that other application layer attacks utilized similar features as DoS attacks.
We predict that removing non-overlapping features from the other non-DoS application
layer attacks should have a minimal impact in algorithm performance. The overlapping
features were chosen as the focus of the study, to determine if our selected features could be
used to differentiate DoS attacks from other non-DoS application layer attacks and reduce
our features down to a minimum. As shown in [14] and [15], the ’Destination Port’ feature
can improve detection and was kept for a feature of study.

Our selected features listed in Table 3.2 represent the focus our experiment. Compared
to past research, this reduced feature set offers a novel, streamlined approach to detecting
application layer DoS attacks.
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Table 3.1. Top Ten Features from Weka of Each Attack Type and Average
Information Gain

Attack Type Top Ten Features
Average

Information Gain

DoS Attack

Total length of fwd packets, Subflow fwd bytes, Avg packet size,
Total length of bwd packets, Subflow bwd bytes, Bwd packet length
mean, Avg bwd segment size, Fwd header packet length, Fwd
header byte length, backward packet length mean

0.815 bits

Brute Force
Fwd IAT min, Fwd packets, Fwd IAT mean, Flow IAT mean, Flow
IAT max, Flow IAT std, Fwd Header Length, Flow bytes/s, Initial
window bytes backward, Bwd Packets/s

0.038 bits

XSS
Fwd IAT min, Fwd packets, Fwd IAT mean, Flow IAT mean, Flow
IAT max, Flow IAT std, Fwd header length, Flow bytes/s, Initial
window bytes backward, Fwd IAT std

0.004 bits

SQL Injection

Fwd packet length max, Max packet length, Bwd IAT mean, Fwd
packet length mean, Avg fwd segment size, Bwd packet length max,
Bwd packet length std, Destination port, Flow bytes/s, Initial
window bytes backward

0.02 bits
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Table 3.2. Reduced Feature Set Used for Experimentation. Source: [36].

Feature Summary
Avg Bwd Segment Size Average number of bytes bulk

rate in the backward direction.
Avg Packet Size Average size of packet
Bwd Packet Length Max Maximum size of packet in

backward direction.
Bwd Packet Length Mean Mean size of packet in for-

ward direction.
Bwd Packet Length Std Standard deviation size of

packet in backward direction.
Destination Port Port destination of flow
Flow Bytes/s Number of flow bytes per sec-

ond
Flow Packets/s Number of flow packets per

second
Fwd Header Length Length (bytes) of the forward

packet header.
Subflow Bwd Bytes The average number of bytes

in a sub flow in the backward
direction.

Subflow Fwd Bytes The average number of bytes
in a sub flow in the forward
direction.

Label The type of traffic recorded,
listed either as Benign or one
of the attack categories.
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3.3 Experiment Setup
To determine the metrics of our reduced feature dataset, our experiment was run in two
parts. First, we tested detection of only DoS attacks in the presence of benign traffic, using
the reduced feature set. We then tested the detection of DoS attacks in the presence of other
application layer attacks, using the reduced feature set. After the completion of the experi-
ment, we compared results of the first two trials against the results obtained from using all
available features to determine the extent to which feature selection impacted computation
time and accuracy.

Within Weka, each algorithm was executed in three steps. First, the dataset was loaded
into Weka in the Pre-processing tab, shown in Figure 3.1.

Figure 3.1. Loading Files Into Weka for Testing

Next, the appropriate algorithm was chosen from the list of options in the Classify tab, 
shown in Figure 3.2.
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Figure 3.2. Choosing Appropriate Algorithm to Model

Lastly, the cross-validation value was chosen in the test options box and the experiment was
run, shown in Figure 3.3.
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Figure 3.3. Selecting Cross-Validation and Model Start

Cross-validation is a method to evaluate machine learning models. This method splits data
into : groups, where each case is used as a test set exactly once and is used in the training
data : − 1 times, seen in Figure 3.4.
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Figure 3.4. Cross-Validation Example with k = 4. Source: [37].

Weka goes one step further and implements stratified :-fold cross-validation. Similar to
:-fold cross-validation, stratified :-fold cross-validation keeps the percentage of samples of
each target class the same. This is significant because of the imbalance within the combined
dataset, as discussed at the end of Section 2.2.6. In our experiment, the value of : was set
to 5. This means that 80% of the data is used for training and 20% of the data is used for
testing in each iteration. While there is no widely accepted standard for training and testing
sizes, an 80% / 20% train-test split is commonly used in machine learning if not performing
cross validation. For our experiment, the training and test record splits for each experiment
are shown in Table 3.3 and 3.4. At the end of each iteration, the results are saved, with the
final score being the average of the results.

Table 3.3. Distribution of Training and Test Data Subsets for Experiment 1

Label Total Training Testing
Benign 97718 78174 19544
DoS 128025 102420 25605
Total 225745 180595 45150
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Table 3.4. Distribution of Training and Test Data Subsets for Experiment 2

Label Total Training Testing
Benign 265724 212579 53145
DoS 128025 102420 25605

Brute Force 1507 1206 301
Web Attack 652 522 130
SQL Inject 21 17 4
Total Attack 130205 104165 26040

Total 395929 316744 79185

3.4 Performance Metrics
Weka outputs the results of each algorithm into a confusion matrix, shown in Table 3.5,
which shows the four cases of classification: True Positive (TP), True Negative (TN), False
Positive (FP), or False Negative (FN).

• True Positive: correct classification of attack traffic as attack. For example, a flow is
predicted as a DoS attack and it is a DoS attack.

• True Negative: correct classification of benign traffic as benign.
• False Positive: incorrect classification of benign traffic as a different attack class. For
example, a flow is predicted as benign traffic and it is a DoS attack.

• False Negative: incorrect classification of attack traffic as benign.

Table 3.5. Confusion Matrix Illustration

Predicted Class
Attack Class Benign Class

True Class
Attack Class )AD4%>B8C8{4 �0;B4#4�0C8{4

Benign Class �0;B4%>B8C8{4 )AD4#4�0C8{4

34

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



We use these values to calculate the accuracy, detection rate (DR), false alarm rate (FAR),
and the MCC of each algorithm, seen in (3.3) – (3.6).

�22DA02~ =
)% + )#

)% + )# + �% + �# (3.3)

�' =
)%

)% + �# (3.4)

��' =
�%�4=8�=

)%�CC02: + �%�4=8�=
(3.5)

"�� =
()% ∗ )#) − (�% ∗ �#)√

()% + �%) ∗ ()% + �#) ∗ ()# + �%) ∗ ()# + �#)
(3.6)

Accuracy is the ratio of predictions that the algorithm correctly classified. However, ac-
curacy alone does not give a complete picture of algorithm performance. MCC returns a
value between -1 and 1, with a higher value indicating a better overall accuracy. The MCC
is a reliable statistical metric for imbalanced datasets, because a high value will only be
obtained if all four categories performed well, as shown in (3.5) [38].

Detection Rate (DR) is an important metric in this experiment, because if an attack is
classified as benign then it still has the potential to compromise the system. False alarm
rate (FAR) (from benign traffic) is also important because of the impact it has on the opera-
tor. Irrelevant alerts lead to wasted time and alert fatigue, because for each alert the operator
must consider the source, detection logic being used, and apply their own logic process
to determine if tools need to be revamped, calibrated, or updated with new data. While
there are no standards for acceptable false alarm rates current survey data reports that an
estimated 20 – 40% of security alerts are false positives [39].

For the first experiment, maximizing overall accuracy and the MCC score were our ob-
jective. For the second experiment, a multi-class confusion matrix was used to compare
each supervised learning classification result with overall accuracy, DR, and FAR as the
measures of performance.

The metrics discussed were chosen because they are a good method of testing whether
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the selected features could provide one step-detection of in both experiments. A high detec-
tion rate combined with a low false alarm rate would show that the selected features would
minimize operational risk while maximizing resources.
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CHAPTER 4:
Results and Analysis

This chapter will discuss the performance of each algorithm against application layer at-
tacks. We analyze the results, followed by general observations. These experiments were
carried out using an Intel(R) Xeon(R) CPU E5-2640 v3 CPU running at 2.60 GHz with 32
Gb of RAM, utilizing default parameters on Weka.

For each of the following subsections we list the algorithm used, the calculated metrics, and
a colored confusion matrix. The matrix utilizes three shades of green and red: a tinted color
for values less than 10%, a pure color for values between 10% and 90%, and shaded color
for values greater than 90%.

4.1 Experiment 1–DoS Detection in Benign Traffic
Experiment 1 tested detection of only DoS attacks in the presence of benign traffic, using
the reduced feature set.

4.1.1 Random Forest
Table 4.1 shows the results of the first experiment using the RF algorithm. RF showed 0% of
the DoS flows (35 of 128 025) wrongly classified as normal traffic while 0% of the normal
flows (27 of 97 718) were wrongly classified as DoS traffic. This performance yields a MCC
value of 0.99 and overall accuracy of 99.97%.
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Table 4.1. Confusion Matrix for Random Forest, Experiment 1

4.1.2 K-NN, K=1
Table 4.2 shows the results of the first experiment using the K-NN algorithm with 1-nearest
neighbor. 1-nearest neighbor showed 0.02% of the DoS flows (68 of 128 025) wrongly
classified as normal traffic while 0.05% of the normal flows (16 of 97 718) were wrongly
classified as DoS traffic. This performance yields a MCC value of 0.99 and overall accuracy
of 99.96%.
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Table 4.2. Confusion Matrix for K-Nearest Neighbor, K=1, Experiment 1

4.1.3 K-NN, K=2
Table 4.3 shows the results of the first experiment using the K-NN algorithm with 2-nearest
neighbor. 2-nearest neighbors showed 0.02% of the DoS flows (76 of 128 025) wrongly
classified as normal traffic while 0.06% of the normal flows (22 of 97 718) were wrongly
classified as DoS traffic. This performance yields a MCC value of 0.99 and overall accuracy
of 99.95%.
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Table 4.3. Confusion Matrix for K-Nearest Neighbor, K=2, Experiment 1

4.1.4 SVM
Table 4.4 shows the results of the first experiment using the SVM algorithm. SVM showed
0.66%of theDoSflows (841 of 128 025)wrongly classified as normal trafficwhile 12.60%of
the normal flows (12 313 of 97 718)werewrongly classified asDoS traffic. This performance
yields a MCC value of 0.88 and overall accuracy of 94.17%.
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Table 4.4. Confusion Matrix for Support Vector Machine, Experiment 1

4.1.5 NB
Table 4.5 shows the results of the first experiment using theNB algorithm.NB showed 0.02%
of the DoS flows (26 of 128 025) wrongly classified as normal traffic while 25.53% of the
normal flows (24 943 of 97 718) were wrongly classified as DoS traffic. This performance
yields a MCC value of 0.79 and overall accuracy of 88.94%.
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Table 4.5. Confusion Matrix for Naïve Bayes, Experiment 1

4.1.6 Experiment 1 Analysis
From this experiment we show that the RF algorithm performed the best at detecting DoS
attacks using our reduced feature set, while SVM performed the worst. While the MCC
scores were 0.99 for both the RF and K-NN algorithms, the RF algorithm yielded less false
positives which leads to a smaller amount of false alerts being generated. Although the DoS
detection rate was 0.68% greater in NB than SVM, the number of false alarms generated
by the NB algorithm were double that of SVM. This trade-off makes the SVM algorithm a
better choice.

4.2 Experiment 2–DoS Detection in the Presence of Other
L7 Attacks

Experiment 2 tested the impact of mixing other attacks in with DoS attacks, using the
reduced feature set. From the literature review, we expect that the addition of other L7 DoS
attacks will decrease the accuracy of our models due to an increase in false positive and
false negative counts. The results from [13] suggests that the large class imbalance of XSS
and SQL attacks will have the biggest impact on our chosen metrics.
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When comparing the overall performance of our algorithms, we focused on how many
attacks went undetected by our reduced feature set and how many false alarms are gen-
erated. An attack classified as benign traffic could lead to a compromise, while an attack
incorrectly classified as a different attack would still be evaluated as dangerous. Benign
traffic classified as an attack would increase the FAR and negatively impact user experience
and security operators.

In each confusion matrix listed in Section 4.2, we provide the FAR for each attack. However,
because of the population imbalance of the other application layer attacks, a high FAR for
an attack may have a disproportionate impact on the overall FAR. As such, we determine
the overall FAR by calculating the median value.

4.2.1 Random Forest
Table 4.6 shows the results of the second experiment using the RF algorithm, with an
overall accuracy of 99.54% and a MCC of 0.9996. RF showed 0.05% of the DoS flows
(58 of 128 025) wrongly classified as normal traffic, showed 30% of other application layer
attacks wrongly classified as normal traffic (636 of 2153), while 0.22% (590 of 265 724)
of the benign flows were wrongly classified as application layer attacks. RF had a median
FAR of 18.58%.
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Table 4.6. Confusion Matrix for Random Forest, Experiment 2

4.2.2 K-NN, K=1
Table 4.7 shows the results of the second experiment using the K-NN algorithm with 1-
nearest neighbor, with an overall accuracy of 99.49% and a MCC of 0.9886. K-NN showed
0.08% of the DoS flows (98 of 128 025) wrongly classified as normal traffic, showed 31%
of other application layer attacks wrongly classified as normal traffic (673 of 2153), while
0.27% (727 of 265 724) of the benign flows were wrongly classified as application layer
attacks. K-NN with 1-nearest neighbor had a median FAR of 29.45%.
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Table 4.7. Confusion Matrix for K-Nearest Neighbor, K=1, Experiment 2

4.2.3 K-NN, K=2
Table 4.8 shows the results of the second experiment using the K-NN algorithm with 2-
nearest neighbors, with an overall accuracy of 99.50% and aMCC of 0.9887. K-NN showed
0.10% of the DoS flows (126 of 128 025) wrongly classified as normal traffic, showed 51%
of other application layer attacks wrongly classified as normal traffic (1102 of 2153), while
0.17% (449 of 265 724) of the benign flows were wrongly classified as application layer
attacks. K-NN with 2-nearest neighbors had a median FAR of 35.68%.
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Table 4.8. Confusion Matrix for K-Nearest Neighbor, K=2, Experiment 2

4.2.4 SVM
Table 4.9 shows the results of the second experiment using the SVM algorithm, with an
overall accuracy of 87.30% and a MCC of 0.7159. SVM showed 36.48% of the DoS flows
(46 701 of 128 025) wrongly classified as normal traffic, showed 99% of other application
layer attacks wrongly classified as normal traffic (2142 of 2153), while 0.50% (1390 of
265 724) of the benign flows were wrongly classified as application layer attacks. SVM had
a median FAR of 0%.
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Table 4.9. Confusion Matrix for Support Vector Machine, Experiment 2

4.2.5 NB
Table 4.10 shows the results of the second experiment using the NB algorithm, with an
overall accuracy of 49.71% and a MCC of 0.2159. NB showed 0.06% of the DoS flows (85
of 128 025) wrongly classified as normal traffic, showed 0.83% of other application layer
attacks wrongly classified as normal traffic (18 of 2153), while 47.19% (60 415 of 265 724)
of the benign flows were wrongly classified as application layer attacks. NB had a median
FAR of 77.62%.
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Table 4.10. Confusion Matrix for Naïve Bayes, Experiment 2

4.2.6 Experiment 2 Analysis
From this experiment we show that the RF algorithm performed the best at detecting DoS
attacks using our reduced feature set, while the SVM and NB algorithms performed the
worst. However, while SVM had a higher MCC score and overall accuracy than NB, the
SVM algorithm had the worst detection of other application layer attacks. Shown in Ta-
ble 4.9, the SVM algorithm produced the least amount of benign false alarms relative to
the other algorithms, leading to a FAR of 0%. But the algorithm also had the most false
negatives. In comparison, as shown in Table 4.10, the NB algorithm had the fewest false
negatives, resulting in less attacks being successful. However, the algorithm also had the
highest benign false positives, leading to the highest FAR of all four algorithms.

These results are consistent with our findings from Experiment 1. The effect of adding
other attacks reduced the overall accuracy of each algorithm, although the large drop in
performance of the SVM and NB algorithms was interesting. The RF algorithm had the
smallest decrease of 0.43% and the NB algorithm had the largest decrease of 39.23%.
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With the population imbalance of Brute Force, XSS, and SQL Injection attacks, a low
non-DoS attack detection rate did not impact the overall detection rate significantly. This is
most easily seen when looking at the reduction of performance with the SVM algorithm:
although there was a 0% detection rate for the other application layer attacks, the overall
detection rate was still 87.30%. However, as discussed in Section 3.4, the MCC gives a
better representation of algorithm performance. Table 4.11 compares the MCC score of
each algorithm using the full feature set or the reduced feature set. The MCC score for the
RF and K-NN algorithms were high for both feature sets, while the SVM and NB algorithms
experienced a large decrease in score with the addition of the other application layer attacks
using the reduced feature set.

Table 4.11. Algorithm MCC Score Comparison

MCC Scores
All Features Reduced Features

Algorithm Experiment 1 Experiment 2 Experiment 1 Experiment 2
RF 0.9998 0.9949 0.9994 0.9996
K-NN, K=1 0.9996 0.9957 0.9992 0.9886
K-NN, K=2 0.9996 0.9920 0.9991 0.9887
SVM 0.9791 0.9471 0.8845 0.7159
NB 0.9547 0.9112 0.7892 0.2159

4.3 Comparisons Between Reduced and Full Feature Sets
While we have focused on the algorithm results of using reduced features, in this next
section we make comparisons based on the same experimental design but while using all
features.

4.3.1 Overall Detection Accuracy Comparisons
Each algorithm showed a decrease in overall detection accuracy when using the reduced
feature set, shown in Table 4.12. The RF algorithm had the smallest decrease in accuracy,
while the NB algorithm had the largest decrease in accuracy between the two feature sets.
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Table 4.12. Algorithm Overall Detection Accuracy

Classification Success Accuracy
All Features Reduced Features

Algorithm Experiment 1 Experiment 2 Experiment 1 Experiment 2
RF 99.99% 99.75% 99.97% 99.54%
K-NN, K=1 99.98% 99.78% 99.96% 99.49%
K-NN, K=2 99.98% 99.65% 99.95% 99.50%
SVM 98.97% 97.54% 94.17% 87.30%
NB 97.75% 95.53% 88.94% 49.71%

4.3.2 DoS Only Detection Rate comparisons
We highlight the DoS only detection rate to show that the reduced feature set is sufficiently
discriminative to detect attacks accurately. As seen in Table 4.13, comparing the DoS
detection rate of the reduced feature set to the DoS detection rate of the full feature set, the
algorithm choice had a clear impact on performance.

Table 4.13. Algorithm DoS Detection Accuracy Comparison

DoS Detection Accuracy
All Features Reduced Features

Algorithm Experiment 1 Experiment 2 Experiment 1 Experiment 2
RF 99.99% 100% 99.97% 99.95%
K-NN, K=1 99.99% 100% 99.95% 99.92%
K-NN, K=2 99.98% 100% 99.94% 99.90%
SVM 99.95% 99.90% 99.34% 63.52%
NB 99.92% 99.90% 99.34% 63.58%
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In regards to the RF and K-NN algorithms, the detection of DoS attacks are comparable
between all features and the reduced features, with 100% detection vs greater than 99.9%
detection. The SVM and NB algorithms had the most significant decrease in performance,
with DoS detection decreasing by more than 33% between the two feature sets. This would
indicate additional features may be needed to help distinguish between the two classes for
the SVM and NB algorithms.

4.3.3 Comparison of Testing Times
We compared the algorithm computation times using the reduced features dataset to the
algorithm computation times using the full feature dataset. Table 4.14 shows the time
required to test and train each algorithm, per fold, for each experiment. Table 4.15 and Table
4.16 show the total testing time for each algorithm and the percent reduction time between
the two feature sets, for each experiment.

Table 4.14. Algorithm Comparison of Time Required to Test and Train
Algorithms, per Fold

Testing and Training Time per Fold (s)
All Features Reduced Features

Algorithm Experiment 1 Experiment 2 Experiment 1 Experiment 2
RF 181.2 215.15 86 167.61
K-NN, K=1 1392.6 3967 1078.6 2988
K-NN, K=2 1284.4 3960 21 155.2 2945
SVM 180.6 97.23 67.2 3,610
NB 4.6 11.22 0.8 2.81
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Table 4.15. Algorithm Total Testing and Training Time Comparisons,
Experiment 1

Total Test and Training Time (s)
Algorithm All Features Reduced Features Time Difference % Time Reduced
RF 906 430 476 52.54%
K-NN, K=1 6936 5393 1543 22.25%
K-NN, K=2 6442 5776 666 10.34%
SVM 903 336 567 62.79%
NB 23 4 19 82.61%

Analyzing the full feature dataset, the NB algorithm had the fastest computation times for
both experiments. The slowest algorithm was the K-NN algorithm in both experiments.
SVM and RF had similar computation times for Experiment 1, with a less than 0.6 second
difference for each fold, but SVM was the faster of the two algorithms in Experiment 2.
Comparing to our reduced feature dataset, the NB algorithm still had the fastest computation
times for both experiments. There was a greater deviation between the SVM and RF
algorithms times for Experiment 1, with SVM being the faster of the two. However, the
SVM algorithm had a large increase in computation time in Experiment 2. Due to the
methods described in Section 2.4.3, the increased build time was most likely due to the
calculation of each pairwise function.
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Table 4.16. Algorithm Total Testing and Training Time Comparisons,
Experiment 2

Total Computation Time (s)
Algorithm All Features Reduced Features Time Difference % Time Reduced
RF 1354 1060 294 21.71%
K-NN, K=1 19 837 14 942 4895 24.68%
K-NN, K=2 19 800 14 725 5075 25.63%
SVM 648 23 282 -22 634 -3492.90%
NB 60 15 45 75%

We next compared the percent reduction of computation time between the reduced feature
set and the full feature set in each experiment, as shown in Table 4.16. For Experiment
1, the use of the reduced feature set had the greatest improvement in the NB algorithm,
which improved by 82.61%. The SVM and RF algorithms had the next largest build time
reductions, decreasing by 62.79% and 52.54% respectively. The K-NN algorithm had the
smallest total build time reduction, decreasing as increased. For Experiment 2, the greatest
reduction in build time was again the NB algorithm, which improved by 75%. The K-NN
algorithm had the second largest build time reductions, although the total build time was
much longer than the RF algorithm. Because of the large increase in build time for the SVM
algorithm, there was a performance decrease of 3491%.

4.3.4 Reduced Feature Set Performance Comparison
As seen in Table 4.17, reviewing the overall performance of our reduced feature set, we see
a performance gain in three of the four algorithms, and a DoS detection accuracy reduction
below 1% in two algorithms. Performance gain was calculated by dividing the computation
time difference by the total computation time using all features.
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Table 4.17. Comparison of Reduced Feature Set Performance against Full
Feature Set Performance

Performance Gain DoS Detection Reduction
Algorithm Experiment 1 Experiment 2 Experiment 1 Experiment 2
RF 52.54% 21.71% 0.02% 0.05%
K-NN, K=1 22.25% 24.64% 0.02% 0.08%
K-NN, K=2 10.34% 25.63% 0.03% 0.10%
SVM 62.79% -3492.90% 4.80% 36.47%
NB 82.61% 75% 8.81% 36.32%

If algorithm computation speed is the main factor of consideration for an organization, the
NB algorithm would be the best algorithm choice using our reduced feature set while the
SVM algorithmwould be the worst choice. If algorithm accuracy is the main factor affecting
performance, the RF algorithm would be the best choice using our reduced feature set while
the NB algorithm would be the worst choice. Although the K-NN algorithm takes longer
to build, the overall accuracy was above 99% for both experiments. The RF algorithm is
the best compromise solution, offering faster computation times while maintaining high
overall accuracy. Depending on the specific real-world implementation, this trade-off could
be acceptable.

In conclusion, our reduced feature set cut testing and training times in half for the most ac-
curate detection algorithm, RF, while incurring only minor reductions (0.02% and 0.005%)
in accuracy and MCC against DoS attacks, respectively.
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CHAPTER 5:
Conclusion

The security of Navy networks relies on tools and capabilities to detect and stop cyberat-
tacks. As application layer attacks continue to becomemore sophisticated, machine learning
can be a valuable tool to enhance the security of Navy networks by allowing analysts to
detect and respond faster to network threats.

Using our reduced feature set, we have shown the detection of DoS attacks both alone
and in the presence of other attack vectors maintained above 99% in the two best perform-
ing algorithms, with a DoS FAR of less than 0.08%. Another advantage of our reduced
feature set is the testing and training times being cut by over 20% for three algorithms. De-
tection of non-DoS application layer attacks were only partially effective, which are close
to [13] using full feature sets.

However, the performance of the reduced feature set is highly algorithm-dependent. In
the two top performing algorithms, there were a slight decrease in overall accuracy, less
than 0.3%, and a decrease of less than 0.1% in DoS detection. The addition of other appli-
cation layer attacks had a significant negative impact on SVM performance and NB overall
accuracy decreased by 45%. Additionally, two algorithms had a median FAR of over 20%.
This shows that more features would be necessary to reduce the false alarm rate for these
algorithms. NB had the highest median FAR of the four algorithms, while SVM had the
most false negatives.

Our objective was to provide one-step detection of DoS attacks using a reduced set of
NetFlow features. We showed that our selected features accomplished this goal. We exe-
cuted our experiment in two phases and compared the results of each algorithm after cross
validation. We used the metrics of accuracy, detection rate, false alarm rate, and MCC to
evaluate our results.
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5.1 Future Work
Cybercrime as a service has enabled DoS attacks to occur against more targets than ever
before [1]. Sections 5.1.1–5.1.3 provide key areas that may yield interesting outcomes if
further examined.

5.1.1 Additional Dataset Attack Types
We are limited to the assumptions from the publicly available datasets regarding benign
background traffic and malicious actors operate. As such, the datasets may not be represen-
tative of behavior that is currently seen in real-world networks. A dataset generated from
the NPS Cybersecurity Operations Center (CSOC) that can be used for training and testing
would be of practical benefit.

Testing against recent attack data would further inform the usability of the NetFlow features.
As new attacks occur, the training data can be updated to aid in prevention of similar attacks.
As new attack data is analyzed, test datasets can be updated to aid detection of specific
attacks. This could lower the dataset imbalance to aid detection of less frequent attack
types.

5.1.2 Feature Selection Increase
Additional features from each of the other application layer attacks could help improve the
detection of those attacks. This can be seen when comparing to the full feature set, where
the overall accuracy was greater than 95% for all algorithms. Further analysis would be
needed to optimize tradeoffs regarding which features would provide the greatest accuracy
of less frequent attacks while also maintaining faster testing time.

5.1.3 Compare Results to WAF Protected Network
In addition, proprietary tools currently exist to aid in network defense against DoS attacks.
A comparison of detection results between various WAF and our NetFlow features will
allow for a cost-saving analysis to be performed.
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5.1.4 Testing of Other Algorithms
Although the features presented in the experiment were used with four supervised algo-
rithms, more research will be needed to evaluate whether these features can be effectively
used to detect application layer DoS attacks with other supervised algorithms or with
semi-supervised algorithms.
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APPENDIX: Data

Figure A.1. Common Features Between Attack Types
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Table A.1. Full List of Features From CICFlowMeter. Source: [36].

Feature Name Description
Destination Port Destination port of flow
Flow Duration Duration of the flow in microseconds
Total Fwd Packet Total packets in the forward direction
Total Backward Packets Total packets in the backward direction
Total Length of Fwd Packets Total size of packet in forward direction
Total Length of Bwd Packets Total size of packet in backward direction
Fwd Packet Length Max Maximum size of packet in forward direction
Fwd Packet Length Min Minimum size of packet in forward direction
Fwd Packet Length Mean Mean size of packet in forward direction
Fwd Packet Length Std Standard deviation size of packet in forward direction
Bwd Packet Length Max Maximum size of packet in backward direction
Bwd Packet Length Min Minimum size of packet in backward direction
Bwd Packet Length Mean Mean size of packet in backward direction
Bwd Packet Length Std Standard deviation size of packet in backward direction
Flow Bytes/s Number of flow packets per second
Flow Packets/s Number of flow bytes per second
Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std
Standard deviation time between two packets sent in the
flow

Flow IAT Max Maximum time between two packets sent in the flow
Flow IAT Min Minimum time between two packets sent in the flow

Fwd IAT Total
Total time between two packets sent in the forward
direction

Fwd IAT Mean
Mean time between two packets sent in the forward
direction

Fwd IAT Std
Standard deviation time between two packets sent in the
forward direction

60

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



Fwd IAT Max
Maximum time between two packets sent in the forward
direction

Fwd IAT Min
Minimum time between two packets sent in the forward
direction

Bwd IAT Total
Total time between two packets sent in the backward
direction

Bwd IAT Mean
Mean time between two packets sent in the backward
direction

Bwd IAT Std
Standard deviation time between two packets sent in the
backward direction

Bwd IAT Max
Maximum time between two packets sent in the
backward direction

Bwd IAT Min
Minimum time between two packets sent in the
backward direction

Fwd PSH Flags
Number of times the PSH flag was set in packets
travelling in the forward direction (0 for UDP)

Bwd PSH Flags
Number of times the PSH flag was set in packets
travelling in the backward direction (0 for UDP

Fwd URG Flags
Number of times the URG flag was set in packets
travelling in the forward direction (0 for UDP)

Bwd URG Flags
Number of times the URG flag was set in packets
travelling in the backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction
Bwd Header Length Total bytes used for headers in the backward direction
Fwd Packets/s Number of forward packets per second
Bwd Packets/s Number of backward packets per second
Min Packet Length Minimum length of a packet
Max Packet Length Maximum length of a packet
Packet Length Mean Mean length of a packet
Packet Length Std Standard deviation length of a packet
Packet Length Variance Variance length of a packet
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FIN Flag Count Number of packets with FIN
SYN Flag Count Number of packets with SYN
RST Flag Count Number of packets with RST
PSH Flag Count Number of packets with PUSH
ACK Flag Count Number of packets with ACK
URG Flag Count Number of packets with URG
CWE Flag Count Number of packets with CWE
ECE Flag Count Number of packets with ECE
Down/Up Ratio Download and upload ratio
Average Packet Size Average size of packet
Avg Fwd Segment Size Average size observed in the forward direction

Avg Bwd Segment Size
Average number of bytes bulk rate in the backward
direction

Fwd Header Length Length of the forward packet header

Fwd Avg Bytes/Bulk
Average number of bytes bulk rate in the forward
direction

Fwd Avg Packets/Bulk
Average number of packets bulk rate in the forward
direction

Fwd Avg Bulk Rate Average number of bulk rate in the forward direction

Bwd Avg Bytes/Bulk
Average number of bytes bulk rate in the backward
direction

Bwd Avg Packets/Bulk
Average number of packets bulk rate in the backward
direction

Bwd Avg Bulk Rate Average number of bulk rate in the backward direction

Subflow Fwd Packets
The average number of packets in a sub flow in the
forward direction

Subflow Fwd Bytes
The average number of bytes in a sub flow in the
forward direction

Subflow Bwd Packets
The average number of packets in a sub flow in the
backward direction
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Subflow Bwd Bytes
The average number of bytes in a sub flow in the
backward direction

Init_Win_bytes_forward
The total number of bytes sent in initial window in the
forward direction

Init_Win_bytes_backward
The total number of bytes sent in initial window in the
backward direction

act_data_pkt_fwd
Count of packets with at least 1 byte of TCP data
payload in the forward

min_seg_size_forward
Minimum segment size observed in the forward
direction

Active Mean Mean time a flow was active before becoming idle

Active Std
Standard deviation time a flow was active before
becoming idle

Active Max Maximum time a flow was active before becoming idle
Active Min Minimum time a flow was active before becoming idle
Idle Mean Mean time a flow was idle before becoming active

Idle Std
Standard deviation time a flow was idle before becoming
active

Idle Max Maximum time a flow was idle before becoming active
Idle Min Minimum time a flow was idle before becoming active
Label Classification of flow
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