9 research outputs found

    ADP-Ribose-1"-Monophosphatase: a Conserved Coronavirus Enzyme That Is Dispensable for Viral Replication in Tissue Culture

    No full text
    Replication of the ∼30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated

    A control strategy to investigate the relationship between specific productivity and high-mannose glycoforms in CHO cells

    No full text
    The final publication is available at Springer via https://doi.org/10.1007/s00253-016-7380-4.The integration of physiological knowledge into process control strategies is a cornerstone for the improvement of biopharmaceutical cell culture technologies. The present contribution investigates the applicability of specific productivity as a physiological control parameter in a cell culture process producing a monoclonal antibody (mAb) in CHO cells. In order to characterize cell physiology, the on-line oxygen uptake rate (OUR) was monitored and the time-resolved specific productivity was calculated as physiological parameters. This characterization enabled to identify the tight link between the deprivation of tyrosine and the decrease in cell respiration and in specific productivity. Subsequently, this link was used to control specific productivity by applying different feeding profiles. The maintenance of specific productivity at various levels enabled to identify a correlation between the rate of product formation and the relative abundance of high-mannose glycoforms. An increase in high mannose content was assumed to be the result of high specific productivity. Furthermore, the high mannose content as a function of cultivation pH and specific productivity was investigated in a design of experiment approach. This study demonstrated how physiological parameters could be used to understand interactions between process parameters, physiological parameters, and product quality attributes

    Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains.

    No full text
    International audienceMacro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Angstroms resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection
    corecore