76 research outputs found

    Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime

    Full text link
    peer reviewedElectromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with hysteresis. Conventional homogenization techniques are however complex and very time-consuming. In consequence, hysteresis and eddy currents in ferromagnetic laminated cores are usually outright disregarded in finite element simulations, considering only saturation, and magnetic losses are only evaluated a posteriori, by means of a Steinmetz-Bertotti like empirical formula. This model simplification yields however potentially inaccurate results in the presence of non-sinusoidal B-fields, common in modern electrical devices. Assuming a time-periodic excitation of the system, a more accurate and fast approach, based on homogenization and neural networks (NN), is presented. A parametric homogenized material law is used in the macroscopic model, whose parameters are given element-wise by a NN according to the actual local waveform of the magnetic field. It is shown that, with an appropriately trained NN, this NN-based material law allows computing fields and losses inside ferromagnetic laminated stacks efficiently and accurately

    Neural network-based simulation of fields and losses in electrical machines with ferromagnetic laminated cores

    Full text link
    peer reviewedDue to the distribution of eddy currents inside ferromagnetic laminations, the accurate modeling of magnetic fields and losses in the laminated cores of electrical machines requires resolving individual laminations with a fine 3D discretization. This yields finite element models so huge and costly that they are unusable in daily industrial R&D. In consequence, hysteresis and eddy currents in laminations are often simply disregarded in the modeling: the laminated core is assumed to be made of a reversible (non lossy) saturable material, and magnetic losses are evaluated a posteriori, by means of Steinmetz-Bertotti like empirical formulas. However, in a context where industry is struggling to minutely assess the impact of magnetic losses on their devices, this simplified approach is more and more regarded as inaccurate and unsatisfactory. This paper proposes a solution to this issue, based on homogenization and on detailed mesoscopic simulations of eddy currents and hysteresis inside the laminations. The proposed approach results in a close-to-conventional 2D magnetic vector potential finite element model, but equipped with an irreversible parametric material law to represent the ferromagnetic stack. In each finite element, the parameters of the law are obtained from a neural network trained to best fit the detailed mesoscopic simulations of the laminations subjected to the same local magnetic field. This way, all aspects of the irreversible ferromagnetic response are appropriately accounted for in the finite element simulation, but at a computational cost drastically reduced with regard to a brute force 3D calculation, and comparable to that of conventional 2D finite element simulations

    Transveneuze versus subcutane defibrillator bij patiënten met hypertrofe cardio myopathie : een retrospectieve analyse in twee Belgische ziekenhuizen

    Get PDF
    Hypertrofe cardiomyopathie (HCM) is een erfelijke aandoening met een verhoogd risico op plotse dood (SCD). Er zijn geen gerandomiseerde studies om de implantatie van een implantable cardioverter-defibrillator (ICD) in patiënten met HCM te leiden. Aanbevelingen zijn gebaseerd op observationele, retrospectieve cohort studies

    A Material Law Based on Neural Networks and Homogenization for the Accurate Finite Element Simulation of Laminated Ferromagnetic Cores in the Periodic Regime

    Full text link
    peer reviewedElectromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with hysteresis. If the lamination is large with respect to its thickness, field and current distributions are accurately resolved by solving a one-dimensional finite element magnetodynamic problem with hysteresis across half the lamination thickness. This 1D model is able to deliver mesoscocpic information to be used, after appropriate homogenization, in the macroscopic modelling of an electrical machine or transformer. As each evaluation of such a homogenised model implies a finite element simulation at the mesoscale, a monolithic coupling might be very time-consuming. This paper proposes an alternative approach, assuming a periodic excitation of the system, where the parameters of a parametric homogenized material law are determined in each finite element with a neural network. The local material law can then be used as a conventional constitutive relationship in a 2D or 3D modelling, with a massive speed-up with respect to the monolithic coupling

    The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries

    Get PDF
    The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.NS

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Improved risk stratification of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the prediction of mortality, stroke and bleed in patients with and without anticoagulation.

    Get PDF
    OBJECTIVES: To provide an accurate, web-based tool for stratifying patients with atrial fibrillation to facilitate decisions on the potential benefits/risks of anticoagulation, based on mortality, stroke and bleeding risks. DESIGN: The new tool was developed, using stepwise regression, for all and then applied to lower risk patients. C-statistics were compared with CHA2DS2-VASc using 30-fold cross-validation to control for overfitting. External validation was undertaken in an independent dataset, Outcome Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). PARTICIPANTS: Data from 39 898 patients enrolled in the prospective GARFIELD-AF registry provided the basis for deriving and validating an integrated risk tool to predict stroke risk, mortality and bleeding risk. RESULTS: The discriminatory value of the GARFIELD-AF risk model was superior to CHA2DS2-VASc for patients with or without anticoagulation. C-statistics (95% CI) for all-cause mortality, ischaemic stroke/systemic embolism and haemorrhagic stroke/major bleeding (treated patients) were: 0.77 (0.76 to 0.78), 0.69 (0.67 to 0.71) and 0.66 (0.62 to 0.69), respectively, for the GARFIELD-AF risk models, and 0.66 (0.64-0.67), 0.64 (0.61-0.66) and 0.64 (0.61-0.68), respectively, for CHA2DS2-VASc (or HAS-BLED for bleeding). In very low to low risk patients (CHA2DS2-VASc 0 or 1 (men) and 1 or 2 (women)), the CHA2DS2-VASc and HAS-BLED (for bleeding) scores offered weak discriminatory value for mortality, stroke/systemic embolism and major bleeding. C-statistics for the GARFIELD-AF risk tool were 0.69 (0.64 to 0.75), 0.65 (0.56 to 0.73) and 0.60 (0.47 to 0.73) for each end point, respectively, versus 0.50 (0.45 to 0.55), 0.59 (0.50 to 0.67) and 0.55 (0.53 to 0.56) for CHA2DS2-VASc (or HAS-BLED for bleeding). Upon validation in the ORBIT-AF population, C-statistics showed that the GARFIELD-AF risk tool was effective for predicting 1-year all-cause mortality using the full and simplified model for all-cause mortality: C-statistics 0.75 (0.73 to 0.77) and 0.75 (0.73 to 0.77), respectively, and for predicting for any stroke or systemic embolism over 1 year, C-statistics 0.68 (0.62 to 0.74). CONCLUSIONS: Performance of the GARFIELD-AF risk tool was superior to CHA2DS2-VASc in predicting stroke and mortality and superior to HAS-BLED for bleeding, overall and in lower risk patients. The GARFIELD-AF tool has the potential for incorporation in routine electronic systems, and for the first time, permits simultaneous evaluation of ischaemic stroke, mortality and bleeding risks. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier for GARFIELD-AF (NCT01090362) and for ORBIT-AF (NCT01165710)
    corecore