11 research outputs found

    Effects of Air Pollutants on Airway Diseases

    No full text
    Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms

    Proteomic identification of moesin upon exposure to acrolein

    No full text
    Abstract Background Acrolein (allyl Aldehyde) as one of smoke irritant exacerbates chronic airway diseases and increased in sputum of patients with asthma and chronic obstructive lung disease. But underlying mechanism remains unresolved. The aim of study was to identify protein expression in human lung microvascular endothelial cells (HMVEC-L) exposed to acrolein. Methods A proteomic approach was used to determine the different expression of proteins at 8 h and 24 h after treatment of acrolein 30 nM and 300 nM to HMVEC-L. Treatment of HMVEC-L with acrolein 30 nM and 300 nM altered 21 protein spots on the two-dimensional gel, and these were then analyzed by MALDI-TOF MS. Results These proteins included antioxidant, signal transduction, cytoskeleton, protein transduction, catalytic reduction. The proteins were classified into four groups according to the time course of their expression patterns such as continually increasing, transient increasing, transient decreasing, and continually decreasing. For validation immunohistochemical staining and Western blotting was performed on lung tissues from acrolein exposed mice. Moesin was expressed in endothelium, epithelium, and inflammatory cells and increased in lung tissues of acrolein exposed mice compared with sham treated mice. Conclusions These results indicate that some of proteins may be an important role for airway disease exacerbation caused by acrolein exposure

    Additional file 1: Figure S1. of Proteomic identification of moesin upon exposure to acrolein

    No full text
    A. Western blot analysis of lung protein extracts from sham- or acrolein-treated mice. Annexin A1 and Tropomyosin 2 expression in OVA plus acrolein-treated mice was higher than in sham-treated mice. B. lung tissues from acrolein-treated and sham-treated mice were incubated with biotinylated anti-rabbit Annexin A1 and Tropomyosin 2 antibody (1:500 dilution). Annexin A1 and Tropomyosin was detected using an avidin-biotin peroxidase complex kit and staining with 3,3′-diaminobenzidine tetrachloride (Zymed Laboratories Inc.) with hematoxylin as a counterstain. Annexin A1 and Tropomyosin 2 protein expression was higher in acrolein-treated mice than in that from sham-treated mice. (DOCX 1404 kb

    Annexin A1 in plasma from patients with bronchial asthma: its association with lung function

    No full text
    Abstract Background Annexin-A1 (ANXA1) is a glucocorticoid-induced protein with multiple actions in the regulation of inflammatory cell activation. The anti-inflammatory protein ANXA1 and its N-formyl peptide receptor 2 (FPR2) have protective effects on organ fibrosis. However, the exact role of ANXA1 in asthma remains to be determined. The aim of this study was to identify the role of ANXA1 in bronchial asthma. Methods In mice sensitized and challenged with ovalbumin (OVA-OVA mice) and mice sensitized with saline and challenged with air (control mice), we investigated the potential links between ANXA1 levels and bronchial asthma using ELISA, immunoblotting, and immunohistochemical staining. Moreover, we also determined ANXA1 levels in blood from 50 asthmatic patients (stable and exacerbated states). Results ANXA1 protein levels in lung tissue and bronchoalveolar lavage fluid were significantly higher in OVA-OVA mice compared with control mice. FPR2 protein levels in lung tissue were significantly higher in OVA-OVA mice compared with control mice. Plasma ANXA1 levels were increased in asthmatic patients compared with healthy controls. Plasma ANXA1 levels were significantly lower in exacerbated patients compared with stable patients with bronchial asthma (p < 0.05). The plasma ANXA1 levels in controlled asthmatic patients were correlated with forced expiratory volume in 1 s (FEV1) (r = − 0.191, p = 0.033) and FEV1/forced vital capacity (FVC) (r = −0.202, p = 0.024). Conclusion These results suggest that ANXA1 may be a potential marker and therapeutic target for asthma
    corecore