220 research outputs found

    Endostatin and anastellin inhibit distinct aspects of the angiogenic process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endostatin and anastellin, fragments of collagen type XVIII and fibronectin, respectively, belong to a family of endogenous inhibitors of angiogenesis which inhibit tumor growth and metastasis in a number of mouse models of human cancer. The mechanism of action of these inhibitors is not well understood, but they have great potential usefulness as non-toxic long-term therapy for cancer treatment.</p> <p>Methods</p> <p>In this study, we compare the anti-angiogenic properties of endostatin and anastellin using cell proliferation and transwell migration assays.</p> <p>Results</p> <p>Anastellin but not endostatin completely inhibited human dermal microvessel endothelial cell proliferation in response to serum stimulation. Both anastellin and endostatin additively inhibited endothelial cell migration in response to VEGF. Anastellin but not endostatin lowered basal levels of active ERK.</p> <p>Conclusion</p> <p>These data indicate that anastellin and endostatin exert their anti-angiogenic effects by modulating distinct steps in the angiogenic pathway and suggest that matrix-derived inhibitors of angiogenesis may exhibit higher efficacy when used in combination.</p

    Integrins Promote Cytokinesis through the RSK Signaling Axis

    Get PDF
    Cytokinesis is the final stage in cell division. Although integrins can regulate cytokinesis, the mechanisms involved are not fully understood. In this study, we demonstrate that integrin-regulated ERK (extracellular signal-related kinase) and RSK (p90 ribosomal S6 kinase) signaling promotes successful cytokinesis. Inhibiting the activation of ERK and RSK in CHO cells by a mutation in the integrin b1 cytoplasmic tail or with pharmacological inhibitors results in the accumulation of cells with midbodies and the formation of binucleated cells. Activation of ERK and RSK signaling by the expression of constitutively active RAF1 suppresses the mutant phenotype in a RSK-dependent manner. Constitutively active RSK2 also restores cytokinesis inhibited by the mutant integrin. Importantly, the regulatory role of the RSK pathway is not specific to CHO cells. MCF-10A human mammary epithelial cells and HPNE human pancreatic ductal epithelial cells exhibit a similar dependence on RSK for successful cytokinesis. In addition, depriving mitotic MCF10A cells of integrin-mediated adhesion by incubating them in suspension suppressed ERK and RSK activation and resulted in a failure of cytokinesis. Furthermore, inhibition of RSK or integrins within the 3D context of a developing salivary gland organ explant also leads to an accumulation of epithelial cells with midbodies, suggesting a similar defect in cytokinesis. Interestingly, neither ERK nor RSK regulates cytokinesis in human fibroblasts, suggesting cell-type specificity. Taken together, our results identify the integrin–RSK signaling axis as an important regulator of cytokinesis in epithelial cells. We propose that the proper interaction of cells with their microenvironment through integrins contributes to the maintenance of genomic stability by promoting the successful completion of cytokinesis

    Cell cycle-dependent activation of Ras

    Get PDF
    AbstractBackground Ras proteins play an essential role in the transduction of signals from a wide range of cell-surface receptors to the nucleus. These signals may promote cellular proliferation or differentiation, depending on the cell background. It is well established that Ras plays an important role in the transduction of mitogenic signals from activated growth-factor receptors, leading to cell-cycle entry. However, important questions remain as to whether Ras controls signalling events during cell-cycle progression and, if so, at which point in the cell-cycle it is activated.Results To address these questions we have developed a novel, functional assay for the detection of cellular activated Ras. Using this assay, we found that Ras was activated in HeLa cells, following release from mitosis, and in NIH 3T3 fibroblasts, following serum-stimulated cell-cycle entry. In each case, peak Ras activation occurred in mid-G1 phase. Ras activation in HeLa cells at mid-G1 phase was dependent on RNA and protein synthesis and was not associated with tyrosine phosphorylation of Shc proteins and their binding to Grb2. Significantly, activation of Ras and the extracellular-signal regulated (ERK) subgroup of mitogen-activated protein kinases were not temporally correlated during G1-phase progression.Conclusions Activation of Ras during mid-G1 phase appears to differ in many respects from its rapid activation by growth factors, suggesting a novel mechanism of regulation that may be intrinsic to cell-cycle progression. Furthermore, the temporal dissociation between Ras and ERK activation suggests that Ras targets alternate effector pathways during G1-phase progression

    The Tetraspanin Cd9 Associates with Transmembrane TGF-α and Regulates TGF-α–Induced Egf Receptor Activation and Cell Proliferation

    Get PDF
    Transforming growth factor-α (TGF-α) is a member of the EGF growth factor family. Both transmembrane TGF-α and the proteolytically released soluble TGF-α can bind to the EGF/TGF-α tyrosine kinase receptor (EGFR) and activate the EGFR-induced signaling pathways. We now demonstrate that transmembrane TGF-α physically interacts with CD9, a protein with four membrane spanning domains that is frequently coexpressed with TGF-α in carcinomas. This interaction was mediated through the extracellular domain of transmembrane TGF-α. CD9 expression strongly decreased the growth factor– and PMA- induced proteolytic conversions of transmembrane to soluble TGF-α and strongly enhanced the TGF- α–induced EGFR activation, presumably in conjunction with increased expression of transmembrane TGF-α. In juxtacrine assays, the CD9-induced EGFR hyperactivation by transmembrane TGF-α resulted in increased proliferation. In contrast, CD9 coexpression with transmembrane TGF-α decreased the autocrine growth stimulatory effect of TGF-α in epithelial cells. This decrease was associated with increased expression of the cdk inhibitor, p21CIP1. These data reveal that the association of CD9 with transmembrane TGF-α regulates ligand-induced activation of the EGFR, and results in altered cell proliferation

    A Role of Tyrosine Phosphatase in Acetylcholine Receptor Cluster Dispersal and Formation

    Get PDF
    Innervation of the skeletal muscle involves local signaling, leading to acetylcholine receptor (AChR) clustering, and global signaling, manifested by the dispersal of preexisting AChR clusters (hot spots). Receptor tyrosine kinase (RTK) activation has been shown to mediate AChR clustering. In this study, the role of tyrosine phosphatase (PTPase) in the dispersal of hot spots was examined. Hot spot dispersal in cultured Xenopus muscle cells was initiated immediately upon the presentation of growth factor–coated beads that induce both AChR cluster formation and dispersal. Whereas the density of AChRs decreased with time, the fine structure of the hot spot remained relatively constant. Although AChR, rapsyn, and phosphotyrosine disappeared, a large part of the original hot spot–associated cytoskeleton remained. This suggests that the dispersal involves the removal of a key linkage between the receptor and its cytoskeletal infrastructure. The rate of hot spot dispersal is inversely related to its distance from the site of synaptic stimulation, implicating the diffusible nature of the signal. PTPase inhibitors, such as pervanadate or phenylarsine oxide, inhibited hot spot dispersal. In addition, they also affected the formation of new clusters in such a way that AChR microclusters extended beyond the boundary set by the clustering stimuli. Furthermore, by introducing a constitutively active PTPase into cultured muscle cells, hot spots were dispersed in a stimulus- independent fashion. This effect of exogenous PTPase was also blocked by pervanadate. These results implicate a role of PTPase in AChR cluster dispersal and formation. In addition to RTK activation, synaptic stimulation may also activate PTPase which acts globally to destabilize preexisting AChR hot spots and locally to facilitate AChR clustering in a spatially discrete manner by countering the action of RTKs

    Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidized bed gasifier

    Get PDF
    The current study investigates the short rotation coppice (SRC) gasification in a bubbling fluidized bed gasifier (BFBG) with air as gasifying medium. The thermochemical processes during combustion were studied to get better control over the air gasification and to improve its effectiveness. The combustion process of SRC was studied by different thermo-analytical techniques. The thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) were performed to examine the thermal degradation and heat flow rates. The product gas composition (CO, CO2, CH4 and H2) produced during gasification was analyzed systematically by using an online gas analyzer and an offline GC analyzer. The influence of different equivalence ratios on product gas composition and temperature profile was investigated during SRC gasification. TG/DTG results showed degradation occur in four stages; drying, devolatilization, char combustion and ash formation. Maximum mass loss ~70% was observed in devolatilization stage and two sharp peaks at 315–500 °C in TG/DSC curves indicate the exothermic reactions. The temperature of gasifier was increased in the range of 650–850 °C along with the height of the reactor with increasing equivalent ratio (ER) from 0.25 to 0.32. The experimental results showed that with an increment in ER from 0.25 to 0.32, the average gas composition of H2, CO, CH4 decreased in the range of 9–6%, 16–12%, 4–3% and CO2 concentration increased from 17 to 19% respectively. The gasifier performance parameters showed a maximum high heating value (HHV) of 4.70 MJ/m3, Low heating value (LHV) of 4.37 MJ/m3 and cold gas efficiency (CGE) of 49.63% at 0.25 ER. The ER displayed direct effect on carbon conversion efficiency (CCE) of 95.76% at 0.32 ER and tar yield reduced from 16.78 to 7.24 g/m3 with increasing ER from 0.25 to 0.32. All parametric results confirmed the reliability of the gasification process and showed a positive impact of ER on CCE and tar yield

    More accurate macro-models of solid oxide fuel cells through electrochemical and microstructural parameter estimation - Part II: Parameter estimation

    Get PDF
    This paper presents a systematic synergetic approach between experimental measurements, equivalent circuit modelling (described in Part I) and macro-scale modelling theory which has proved to be instrumental for the estimation of microstructural and electrochemical features of a Ni- YSZ|YSZ|Pr2NiO4+δ-GDC solid oxide fuel cell (SOFC). The aforementioned parameters have been used to generate a more accurate CFD macro-model which has been validated against the experimental results (presented in Part III)

    Dominant negative knockout of p53 abolishes ErbB2-dependent apoptosis and permits growth acceleration in human breast cancer cells

    Get PDF
    We previously reported that the ErbB2 oncoprotein prolongs and amplifies growth factor signalling by impairing ligand-dependent downregulation of hetero-oligomerised epidermal growth factor receptors. Here we show that treatment of A431 cells with different epidermal growth factor receptor ligands can cause growth inhibition to an extent paralleling ErbB2 tyrosine phosphorylation. To determine whether such growth inhibition signifies an interaction between the cell cycle machinery and ErbB2-dependent alterations of cell signalling kinetics, we used MCF7 breast cancer cells (which express wild-type p53) to create transient and stable ErbB2 transfectants (MCF7-B2). Compared with parental cells, MCF7-B2 cells are characterised by upregulation of p53, p21WAF and Myc, downregulation of Bcl2, and apoptosis. In contrast, MCF7-B2 cells co-transfected with dominant negative p53 (MCF7-B2/Δp53) exhibit reduced apoptosis and enhanced growth relative to both parental MCF7-B2 and control cells. These data imply that wild-type p53 limits survival of ErbB2-overexpressing breast cancer cells, and suggest that signals of varying length and/or intensity may evoke different cell outcomes depending upon the integrity of cell cycle control genes. We submit that acquisition of cell cycle control defects may play a permissive role in ErbB2 upregulation, and that the ErbB2 overexpression phenotype may in turn select for the survival of cells with p53 mutations or other tumour suppressor gene defects
    corecore