32 research outputs found

    A global optimisation approach to range-restricted survey calibration

    Get PDF
    Survey calibration methods modify minimally unit-level sample weights to fit domain-level benchmark constraints (BC). This allows exploitation of auxiliary information, e.g. census totals, to improve the representativeness of sample data (addressing coverage limitations, non-response) and the quality of estimates of population parameters. Calibration methods may fail with samples presenting small/zero counts for some benchmark groups or when range restrictions (RR), such as positivity, are imposed to avoid unrealistic or extreme weights. User-defined modifications of BC/RR performed after encountering non-convergence allow little control on the solution, and penalization approaches modelling infeasibility may not guarantee convergence. Paradoxically, this has led to underuse in calibration of highly disaggregated information, when available. We present an always-convergent flexible two-step Global Optimisation (GO) survey calibration approach. The feasibility of the calibration problem is assessed, and automatically controlled minimum errors in BC or changes in RR are allowed to guarantee convergence in advance, while preserving the good properties of calibration estimators. Modelling alternatives under different scenarios, using various error/change and distance measures are formulated and discussed. The GO approach is validated by calibrating the weights of the 2012 Health Survey for England to a fine age-gender-region cross-tabulation (378 counts) from the 2011 Census in England and Wales

    A global optimisation approach to range-restricted survey calibration

    Get PDF
    Survey calibration methods modify minimally unit-level sample weights to fit domain-level benchmark constraints (BC). This allows exploitation of auxiliary information, e.g. census totals, to improve the representativeness of sample data (addressing coverage limitations, non-response) and the quality of estimates of population parameters. Calibration methods may fail with samples presenting small/zero counts for some benchmark groups or when range restrictions (RR), such as positivity, are imposed to avoid unrealistic or extreme weights. User-defined modifications of BC/RR performed after encountering non-convergence allow little control on the solution, and penalization approaches modelling infeasibility may not guarantee convergence. Paradoxically, this has led to underuse in calibration of highly disaggregated information, when available. We present an always-convergent flexible two-step Global Optimisation (GO) survey calibration approach. The feasibility of the calibration problem is assessed, and automatically controlled minimum errors in BC or changes in RR are allowed to guarantee convergence in advance, while preserving the good properties of calibration estimators. Modelling alternatives under different scenarios, using various error/change and distance measures are formulated and discussed. The GO approach is validated by calibrating the weights of the 2012 Health Survey for England to a fine age-gender-region cross-tabulation (378 counts) from the 2011 Census in England and Wales

    The EBV Immunoevasins vIL-10 and BNLF2a Protect Newly Infected B Cells from Immune Recognition and Elimination

    Get PDF
    Lifelong persistence of Epstein-Barr virus (EBV) in infected hosts is mainly owed to the virus' pronounced abilities to evade immune responses of its human host. Active immune evasion mechanisms reduce the immunogenicity of infected cells and are known to be of major importance during lytic infection. The EBV genes BCRF1 and BNLF2a encode the viral homologue of IL-10 (vIL-10) and an inhibitor of the transporter associated with antigen processing (TAP), respectively. Both are known immunoevasins in EBV's lytic phase. Here we describe that BCRF1 and BNLF2a are functionally expressed instantly upon infection of primary B cells. Using EBV mutants deficient in BCRF1 and BNLF2a, we show that both factors contribute to evading EBV-specific immune responses during the earliest phase of infection. vIL-10 impairs NK cell mediated killing of infected B cells, interferes with CD4+ T-cell activity, and modulates cytokine responses, while BNLF2a reduces antigen presentation and recognition of newly infected cells by EBV-specific CD8+ T cells. Together, both factors significantly diminish the immunogenicity of EBV-infected cells during the initial, pre-latent phase of infection and may improve the establishment of a latent EBV infection in vivo

    Cervical epithelial damage promotes Ureaplasma parvum ascending infection, intrauterine inflammation and preterm birth induction in mice

    Get PDF
    Around 40% of preterm births are attributed to ascending intrauterine infection, and Ureaplasma parvum (UP) is commonly isolated in these cases. Here we present a mouse model of ascending UP infection that resembles human disease, using vaginal inoculation combined with mild cervical injury induced by a common spermicide (Nonoxynol-9, as a surrogate for any mechanism of cervical epithelial damage). We measure bacterial load in a non-invasive manner using a luciferase-expressing UP strain, and post-mortem by qPCR and bacterial titration. Cervical exposure to Nonoxynol-9, 24 h pre-inoculation, facilitates intrauterine UP infection, upregulates pro-inflammatory cytokines, and increases preterm birth rates from 13 to 28%. Our results highlight the crucial role of the cervical epithelium as a barrier against ascending infection. In addition, we expect the mouse model will facilitate further research on the potential links between UP infection and preterm birth

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention

    Infection of Semen-Producing Organs by SIV during the Acute and Chronic Stages of the Disease

    Get PDF
    International audienceBACKGROUND: Although indirect evidence suggests the male genital tract as a possible source of persistent HIV shedding in semen during antiretroviral therapy, this phenomenon is poorly understood due to the difficulty of sampling semen-producing organs in HIV+ asymptomatic individuals. METHODOLOGY/PRINCIPAL FINDINGS: Using a range of molecular and cell biological techniques, this study investigates SIV infection within reproductive organs of macaques during the acute and chronic stages of the disease. We demonstrate for the first time the presence of SIV in the testes, epididymides, prostate and seminal vesicles as early as 14 days post-inoculation. This infection persists throughout the chronic stage and positively correlates with blood viremia. The prostate and seminal vesicles appear to be the most efficiently infected reproductive organs, followed by the epididymides and testes. Within the male genital tract, mostly T lymphocytes and a small number of germ cells harbour SIV antigens and RNA. In contrast to the other organs studied, the testis does not display an immune response to the infection. Testosteronemia is transiently increased during the early phase of the infection but spermatogenesis remains unaffected. CONCLUSIONS/SIGNIFICANCE: The present study reveals that SIV infection of the macaque male genital tract is an early event and that semen-producing organs display differential infection levels and immune responses. These results help elucidate the origin of HIV in semen and constitute an essential base to improving the design of antiretroviral therapies to eradicate virus from semen

    Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial

    Get PDF
    BACKGROUND: Local treatment of the prostate might not only improve local control, but also slow the progression of metastatic disease. We hypothesised that radiotherapy (RT) to the prostate would improve overall survival in men presenting with metastatic prostate cancer (PCa) and that the survival benefit would be greater in men with a lower metastatic burden. METHOD: STAMPEDE is a multi-arm multi-stage platform protocol that included a randomised phase III comparison to test the above hypotheses. Standard-of-care (SOC) was lifelong ADT, with up-front docetaxel permitted from Dec-2015. Stratified randomisation within 12 weeks on ADT allocated pts 1:1 to SOC or SOC+RT. Men allocated to RT received daily (55Gy/20f over 4 weeks) or weekly (36Gy/6f over 6 weeks) RT, started ≤8 weeks after randomisation or completion of docetaxel. The RT schedule was nominated before randomisation. The primary outcome measure was death from any cause; secondary outcome measures included failure-free survival (FFS). Comparison of SOC vs SOC+RT for survival had 90% power at 2.5% 1-sided alpha for hazard ratio (HR) of 0.75, requiring approximately 267 control arm deaths. Analyses used Cox proportional hazards & flexible parametric models, adjusted for stratification factors. A pre-specified subgroup analysis tested the effects of prostate RT by baseline metastatic burden. RESULTS: 2061 men with newly-diagnosed M1 PCa were randomised from Jan 2013 to Sep 2016. Randomised groups were well balanced: median age 68yrs; median PSA 97ng/ml; 18% early docetaxel; metastatic burden: 40% lower metastatic burden, 54% higher metastatic burden, 6% unknown in the group as a whole. Prostate RT improved FFS (HR=0.76, 95%CI 0.68, 0.84; p=3.36x10-7 60 ) but not overall survival (HR=0.92, 95%CI 0.80, 1.06; p=0.266). Pre-specified subgroup analysis showed 62 improved overall survival for prostate RT in 819 men with a lower metastatic burden 63 (HR=0.68, 95%CI 0.52, 0.90; p=0.007) but not in 1120 men with a higher metastatic burden (HR=1.07, 95%CI 0.90, 1.28; p=0.300). RT was well-tolerated during (G3-4 5% SOC+RT) and after treatment (G3-4 <1% SOC, 4% SOC+RT). CONCLUSIONS: Radiotherapy to the prostate did not improve survival for unselected patients with newly-diagnosed metastatic prostate cancer, but, in a pre-specified subgroup analysis, did improve survival in men with a lower metastatic burden. Therefore, prostate radiotherapy should be a standard treatment option for men with oligometastatic disease

    Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination

    Get PDF
    Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design
    corecore