927 research outputs found
Polarization transfer in scattering using the Super BigBite Spectrometer
The effects of multi-photon-exchange and other higher-order QED corrections
on elastic electron-proton scattering have been a subject of high experimental
and theoretical interest since the polarization transfer measurements of the
proton electromagnetic form factor ratio at large momentum
transfer conclusively established the strong decrease of this ratio with
for GeV. This result is incompatible with previous
extractions of this quantity from cross section measurements using the
Rosenbluth Separation technique. Much experimental attention has been focused
on extracting the two-photon exchange (TPE) effect through the unpolarized
cross section ratio, but polarization transfer in polarized elastic
scattering can also reveal evidence of hard two-photon exchange. Furthermore,
it has a different sensitivity to the generalized TPE form factors, meaning
that measurements provide new information that cannot be gleaned from
unpolarized scattering alone. Both -dependence of polarization
transfer at fixed , and deviations between electron-proton and
positron-proton scattering are key signatures of hard TPE. A polarized positron
beam at Jefferson Lab would present a unique opportunity to make the first
measurement of positron polarization transfer, and comparison with
electron-scattering data would place valuable constraints on hard TPE. Here, we
propose a measurement program in Hall A that combines the Super BigBite
Spectrometer for measuring recoil proton polarization, with a non-magnetic
calorimetric detector for triggering on elastically scattered positrons. Though
the reduced beam current of the positron beam will restrict the kinematic
reach, this measurement will have very small systematic uncertainties, making
it a clean probe of TPE.Comment: 6 pages, 3 figures. Contribution to the EPJA topical issue, "An
Experimental Program with Positron Beams at Jefferson Lab." arXiv admin note:
substantial text overlap with arXiv:2007.15081, arXiv:1906.0941
Rockfall Mitigation Measures
Highways in Kentucky contain numerous rock slopes and rockfall from these slopes represent potential dangers to motorists. As these highway rock cut slopes age and deteriorate because of weathering, the potential for rockfall and rock slides increases. Some bodily injuries and traffic fatalities have been reported in past years. The general aims of this study were to establish a highway rock cut slope policy and devise a statewide system of dealing with this problem. This study represents the start of an effort by the Kentucky Transportation Cabinet to develop a proactive stance and policy toward preventing, minimizing, or mitigating the rockfall problem on the Cabinet\u27s highways and to establish a rockfall risk management program. As this study shows, the vast majority of rockfall problems in Kentucky occur in counties located east of Interstate 75. Preliminary rockfall hazardous ratings of all rock cut slopes – some 5270 slopes – on the Interstates, Parkways, and most Primary routes were performed using the rockfall hazardous rating system (RHRS) devised by Pierson and Vickle of Oregon DOT. This approach appears to be a good system for rating the potential for rockfall at a given highway rock cut location. Some 180 slopes were identified as hazardous. Detailed numerical ratings were performed at those locations. Differential weathering and structural characteristics – jointing and unfavorable orientations – were the major causes of rockfall. Few mitigation measures have been used on Kentucky\u27s highways. For the sedimentary rock strata in Kentucky, benching of rock slopes appears to be very effective in preventing, or mitigating, rockfall on Kentucky\u27s highways. The rock cut slope design guidelines used by the Cabinet appear to be sound. The basic problem is not design standards, but the fact that many of the highway rock slopes are aging, weathering, and deteriorating. With aging, rockfall problems will continue to increase with time. The computer rockfall simulation program devised by Colorado engineers was used to analyze several case studies of rockfall. This program appears to a very good analytical tool for assessing the stability and safety of existing rock slopes and newly designed rock slopes and will be useful in devising remedial and mitigating plans at rockfall sites
Dataset for large-scale, lateral-torsional buckling tests of continuous beams in a grillage system
A number of large-scale tests of a grillage system are summarized and reduced data are provided. The tests were completed in association with a Louisiana Transportation Research Center (LTRC) project for the Louisiana Department of Transportation and Development (LA DOTD) whose goal was to better quantify behavior and limit states of steel bridge floor systems to refine longitudinal member (stringer) load- rating calculations. A number of tests focused on the behavior of the stringers resting on transverse members (a floorbeam), a system akin to a grillage. The system was proportioned with the expectation that stringer lateral-torsional buckling, a key steel bridge beam design and load-rating limit state, would occur. The provided dataset includes specimen descriptions and output from 58 tests. Investigated parameters included: stringer unbraced lengths; bracing types (i.e., bolted steel diaphragms versus clamped timber struts); load locations; and support conditions. Sample tests are described and reduced results summarized and presented
Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance
What can we learn from the hair of the dog? Complex effects of endogenous and exogenous stressors on canine hair cortisol
Hair is an emerging biological matrix in which to measure chronic HPA axis activity, offering a longer term view into an animal’s life. We explored effects of exogenous (e.g. lifestyle, medications, social environment) and endogenous (e.g. disease, behaviour) stressors on hair cortisol concentration (HCC) in a population of Border Collies (BCs). Owners of BCs were recruited and reported their dog’s lifestyle, clinical history, anxiety-related behaviour, and collected a white hair sample from their dog’s dorsal neck region. HCC was determined using established methods with a commercial cortisol assay kit. Samples from 135 BCs were analysed, with 91 healthy controls and 44 diagnosed with epilepsy as a model disease. Factors associated with higher HCC included psychosocial stressors (living with three or more other dogs) and lifestyle (engaging in competitive flyball); while factors associated with lower HCC included anxiety (stranger-directed and non-social), health (epilepsy diagnosis, with number of seizures to date negatively correlated with HCC) and medication (certain anti-epileptic drugs were associated with elevated or reduced HCC). These novel results highlight the potential of chronic stress with frequent or persisting HPA-axis hyperactivity leading to a state of hypocortisolism, and the need to consider stressor recency and recurrence when interpreting HCC data
Final analysis of proton form factor ratio data at Q(2)=4.0, 4.8, and 5.6 GeV2
Precise measurements of the proton electromagnetic form factor ratio R = mu(p)G(E)(p)/G(M)(p) using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q(2) for Q(2) greater than or similar to 1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab\u27s Hall A measured R at four Q(2) values in the range 3.5 GeV2 \u3c = Q(2) \u3c = 5.6 GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q(2) motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q(2) region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis
Luminescent Ruthenium(II) Polypyridyl Functionalized Gold Nanoparticles; Their DNA Binding Abilities and Application As Cellular Imaging Agents
The synthesis and photophysical and biological
investigation of Ru(II)-polypyridyl stabilized watersoluble,
luminescent gold nanoparticles (AuNPs) are described.
These structures bind to DNA and undergo rapid
cellular uptake, being localized within the cell cytoplasm and
nucleus within 4 h
2006 SQ372: A Likely Long-Period Comet from the Inner Oort Cloud
We report the discovery of a minor planet (2006 SQ372) on an orbit with a
perihelion of 24 AU and a semimajor axis of 796 AU. Dynamical simulations show
that this is a transient orbit and is unstable on a timescale of 200 Myrs.
Falling near the upper semimajor axis range of the scattered disk and the lower
semimajor axis range of the Oort Cloud, previous membership in either class is
possible. By modeling the production of similar orbits from the Oort Cloud as
well as from the scattered disk, we find that the Oort Cloud produces 16 times
as many objects on SQ372-like orbits as the scattered disk. Given this result,
we believe this to be the most distant long-period comet ever discovered.
Furthermore, our simulation results also indicate that 2000 OO67 has had a
similar dynamical history. Unaffected by the "Jupiter-Saturn Barrier," these
two objects are most likely long-period comets from the inner Oort Cloud
Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes
Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 μ in MCF-7 cells and IC 50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society
Microwave Assisted Synthesis of Py-Im Polyamides
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps
- …