26 research outputs found

    Les Garennes (Tourbes, HĂ©rault) : une aire d’ensilage du premier Ăąge du Fer

    Get PDF
    L’exploration en 2007 de huit silos, de deux fosses et d’un trou de poteau, datĂ©s du milieu du premier Ăąge du Fer, constitue, malgrĂ© la modestie des vestiges, une dĂ©couverte originale. Elle documente une forme d’occupation rurale et une pĂ©riode, la transition entre le VIIe et le VIe s. av. J.‑C., mal connues. L’étude a pour objectif de caractĂ©riser la nature et la fonction de ce site. Au prĂ©alable, on dressera un bilan des diffĂ©rentes structures et catĂ©gories de vestiges.In 2007, eight silos, two pits and one posthole, from the First Iron Age, were found. The moderate corpus remains interesting, beeing a rural settlement of the 7th and the 6th c. transition BC. The study identifies the site’s nature and function

    Les Garennes (Tourbes, HĂ©rault) : une aire d’ensilage du premier Ăąge du Fer

    Get PDF
    L’exploration en 2007 de huit silos, de deux fosses et d’un trou de poteau, datĂ©s du milieu du premier Ăąge du Fer, constitue, malgrĂ© la modestie des vestiges, une dĂ©couverte originale. Elle documente une forme d’occupation rurale et une pĂ©riode, la transition entre le VIIe et le VIe s. av. J.‑C., mal connues. L’étude a pour objectif de caractĂ©riser la nature et la fonction de ce site. Au prĂ©alable, on dressera un bilan des diffĂ©rentes structures et catĂ©gories de vestiges.In 2007, eight silos, two pits and one posthole, from the First Iron Age, were found. The moderate corpus remains interesting, beeing a rural settlement of the 7th and the 6th c. transition BC. The study identifies the site’s nature and function

    Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model

    Get PDF
    International audienceThe emergence of accelerators as standard computing resources on supercomputers and the subsequent architectural complexity increase revived the need for high-level parallel programming paradigms. Sequential task-based programming model has been shown to efficiently meet this challenge on a single multicore node possibly enhanced with accelerators, which motivated its support in the OpenMP 4.0 standard. In this paper, we show that this paradigm can also be employed to achieve high performance on modern supercomputers composed of multiple such nodes, with extremely limited changes in the user code. To prove this claim, we have extended the StarPU runtime system with an advanced inter-node data management layer that supports this model by posting communications automatically. We illustrate our discussion with the task-based tile Cholesky algorithm that we implemented on top of this new runtime system layer. We show that it enables very high productivity while achieving a performance competitive with both the pure Message Passing Interface (MPI)-based ScaLAPACK Cholesky reference implementation and the DPLASMA Cholesky code, which implements another (non-sequential) task-based programming paradigm

    Overview of Distributed Linear Algebra on Hybrid Nodes over the StarPU Runtime

    Get PDF
    International audienceRuntime systems usually abstract a single node, like Plasma/Quark, Flame/SuperMatrix, Morse/StarPU,Dplasma/Parsec ... When going into harnessing cluster of nodes, how should they communicate? By using explicit MPI user calls ? By using a specific paradigm (Dplasma) ? Or can we keep the same paradigm and almost the same code, and leave the runtime system handle data transfers? We show how such a system has been sucessfully implemented on top of the StarPU runtime

    Décomposition en valeurs singuliÚres randomisée et positionnement multidimensionel à base de tùches

    Get PDF
    The multidimensional scaling (MDS) is an important and robust algorithm for representing individual cases of a dataset out of their respective dissimilarities. However, heuristics, possibly trading-off with robustness, are often preferred in practice due to the potentially prohibitive memory and computational costs of the MDS. The recent introduction of random projection techniques within the MDS allowed it to be become competitive on larger testcases. The goal of this manuscript is to propose a high-performance distributed-memory MDS based on random projection for processing data sets of even larger size (up to one million items). We propose a task-based design of the whole algorithm and we implement it within an efficient software stack including state-of-the-art numerical solvers, runtime systems and communication layers. The outcome is the ability to efficiently apply robust MDS to large datasets on modern supercomputers. We assess the resulting algorithm and software stack to the point cloud visualization for analyzing distances between sequencesin metabarcoding.Le positionnement multidimensionnel (MDS) est un algorithme important et robuste pour reprĂ©senter les cas individuels d’un ensemble de donnĂ©es en fonction de leurs dissimilaritĂ©s respectives. Cependant, les heuristiques, qui peuvent ĂȘtre un compromis avec la robustesse, sont souvent prĂ©fĂ©rĂ©es en pratique en raison de sa consommation mĂ©moire et de ses coĂ»ts potentiellement prohibitifs. L’introduction rĂ©cente de techniques de projection alĂ©atoire dans le MDS lui a permis de devenir compĂ©titif sur des cas test plus importants. L’objectif de ce manuscrit est de proposer un MDS haute performance basĂ© sur la projection alĂ©atoire pour le traitement d’ensembles de donnĂ©es de taille encore plus grande (jusqu’à un million d’élĂ©ments). Nous proposons une conception de l’algorithme et nous l’implĂ©mentons dans une pile logicielle efficace, comprenant des solveurs numĂ©riques de pointe ainsi des systĂšmes d’exĂ©cution et des couches de communication optimisĂ©s. L’aboutissement de ce travail rĂ©sultat est la capacitĂ© d’appliquer efficacement le MDS robuste Ă  de grands ensembles de donnĂ©es sur des super-ordinateurs modernes. Nous Ă©valuons l’algorithme etla pile logicielle rĂ©sultants Ă  la visualisation de nuages de points pour l’analyse des distances entre sĂ©quences de metabarcoding

    Origin and mobility of Iron Age Gaulish groups in present-day France revealed through archaeogenomics

    Get PDF
    The Iron Age period occupies an important place in French history, as the Gauls are regularly presented as the direct ancestors of the extant French population. We documented here the genomic diversity of Iron Age communities originating from six French regions. The 49 acquired genomes permitted us to highlight an absence of discontinuity between Bronze Age and Iron Age groups in France, lending support to a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. Genomic analyses revealed strong genetic homogeneity among the regional groups associated with distinct archaeological cultures. This genomic homogenisation appears to be linked to individuals’ mobility between regions as well as gene flow with neighbouring groups from England and Spain. Thus, the results globally support a common genomic legacy for the Iron Age population of modern-day France that could be linked to recurrent gene flow between culturally differentiated communities

    Parallel numerical methods for large scale power systems simulations

    No full text
    L’analyse de stabilitĂ© en rĂ©gime transitoire du rĂ©seau de transport Ă©lectrique permet de contrĂŽler le bon retour au rĂ©gime stationnaire du systĂšme soumis Ă  une perturbation. Cette analyse systĂ©matique des systĂšmes de rĂ©seaux en dĂ©veloppement permet notamment d’optimiser la production et la consommation de l’énergie Ă©lectrique, et de protĂ©ger les Ă©quipements tels que les centrales Ă©lectriques, les transformateurs, les lignes haute-tension, etc. Afin d’amĂ©liorer la stabilitĂ©, la robustesse et la viabilitĂ© de ces systĂšmes, la tendance est Ă  l’interconnexion des rĂ©seaux de transport rĂ©gionaux et nationaux, et ainsi, au dĂ©veloppement et Ă  l’analyse de systĂšmes toujours plus grands. Le problĂšme de stabilitĂ© Ă©lectrique peut ĂȘtre simulĂ© numĂ©riquement grĂące Ă  l’intĂ©gration d’un systĂšme d’équations algĂ©bro-diffĂ©rentielles non-linĂ©aire et raide. Lorsque le problĂšme traitĂ© est trĂšs grand, la simulation numĂ©rique devient trĂšs coĂ»teuse en temps de calcul et ralentit considĂ©rablement le travail des professionnels du secteur. Cette thĂšse a pour but de proposer, d’étudier, et de dĂ©velopper des mĂ©thodes innovantes de calcul parallĂšle pour la rĂ©solution des systĂšmes d’équations diffĂ©rentielles issus de la simulation de grands rĂ©seaux Ă©lectriques tel que le rĂ©seau europĂ©en. Dans ce manuscrit, on livre une analyse des propriĂ©tĂ©s de ces systĂšmes assez spĂ©cifiques : creux, irrĂ©guliers, non-linĂ©aires, raides et hĂ©tĂ©rogĂšnes. On discute notamment de la structure particuliĂšre de ces systĂšmes qui rend attrayante l’application d’une mĂ©thode de dĂ©composition de domaine. On Ă©tudie ainsi plusieurs mĂ©thodes de parallĂ©lisation en espace : la parallĂ©lisation fine de chaque opĂ©ration coĂ»teuse, la rĂ©solution du systĂšme non-linĂ©aire par dĂ©composition en sous-rĂ©seaux faiblement couplĂ©s, d’abord sur chaque Ă©tape d’intĂ©gration, puis par mĂ©thode de relaxation d’ondes. On aborde aussi la parallĂ©lisation en temps de type algorithme PararĂ©el ainsi qu’une mĂ©thode parallĂšle espace-temps bĂ©nĂ©ficiant des propriĂ©tĂ©s couplĂ©es des mĂ©thodes de relaxation d’ondes et de PararĂ©el. Dans ces travaux, nous proposons des mĂ©thodes assurant la convergence rapide des mĂ©thodes de dĂ©composition de domaine quel que soit le nombre de sous-domaines et de processeurs employĂ©s. Nous introduisons pour cela des techniques de prĂ©conditionnement en espace adĂ©quates afin d’amĂ©liorer la scalabilitĂ© des mĂ©thodes de parallĂ©lisation envisagĂ©es.Power system transient stability analysis enables to control the return to equilibrium of the system subjected to a disturbance. This systematic analysis of developing transport networks allows to optimize the production and the consumption of electric power and to protect the equipments such as power plants, transformers, highvoltage lines and so on. In order to improve the stability, the robustness, and the sustainability of these systems, a worldwide trend is to interconnect regional and national transport networks. This leads to analyze ever larger systems. The power-stability problem can be numerically simulated owing to the integration of a differential-algebraic system which is nonlinear and stiff. When considering a very large problem, numerical simulation is very time consuming and significantly slows down the work of professionals. This thesis aims at studying innovative parallel computing methods for the resolution of differential systems arising from the transient stability analysis of large power systems such as the European Transport Network. In this manuscript, we first deliver an analysis of the properties of these rather specific systems: sparse, irregular, nonlinear, stiff, and heterogeneous. We discuss the particular structure of these systems making the application of a domain decomposition method interesting. Thus, we study several space parallelization methods: the fine parallelization of each costly tasks, the resolution of the nonlinear system by decomposition into weakly coupled subnetworks, first on each integration step separately, and then by waveform relaxation method. We also address the time parallelization with a Parareal-based algorithm and a space-time parallel method which benefits from the coupled properties of waveform relaxation and Parareal methods. In this work, we focus on methods which ensure a fast convergence of domain decomposition methods whatever the number of subdomains/processors used. In order to achieve such a goal, we introduce space preconditioning techniques to improve the scalability of the parallelization methods considered

    Parallel numerical methods for large scale power systems simulations

    No full text
    L analyse de stabilitĂ© en rĂ©gime transitoire du rĂ©seau de transport Ă©lectrique permet de contrĂŽler le bon retour au rĂ©gime stationnaire du systĂšme soumis Ă  une perturbation. Cette analyse systĂ©matique des systĂšmes de rĂ©seaux en dĂ©veloppement permet notamment d optimiser la production et la consommation de l Ă©nergie Ă©lectrique, et de protĂ©ger les Ă©quipements tels que les centrales Ă©lectriques, les transformateurs, les lignes haute-tension, etc. Afin d amĂ©liorer la stabilitĂ©, la robustesse et la viabilitĂ© de ces systĂšmes, la tendance est Ă  l interconnexion des rĂ©seaux de transport rĂ©gionaux et nationaux, et ainsi, au dĂ©veloppement et Ă  l analyse de systĂšmes toujours plus grands. Le problĂšme de stabilitĂ© Ă©lectrique peut ĂȘtre simulĂ© numĂ©riquement grĂące Ă  l intĂ©gration d un systĂšme d Ă©quations algĂ©bro-diffĂ©rentielles non-linĂ©aire et raide. Lorsque le problĂšme traitĂ© est trĂšs grand, la simulation numĂ©rique devient trĂšs coĂ»teuse en temps de calcul et ralentit considĂ©rablement le travail des professionnels du secteur. Cette thĂšse a pour but de proposer, d Ă©tudier, et de dĂ©velopper des mĂ©thodes innovantes de calcul parallĂšle pour la rĂ©solution des systĂšmes d Ă©quations diffĂ©rentielles issus de la simulation de grands rĂ©seaux Ă©lectriques tel que le rĂ©seau europĂ©en. Dans ce manuscrit, on livre une analyse des propriĂ©tĂ©s de ces systĂšmes assez spĂ©cifiques : creux, irrĂ©guliers, non-linĂ©aires, raides et hĂ©tĂ©rogĂšnes. On discute notamment de la structure particuliĂšre de ces systĂšmes qui rend attrayante l application d une mĂ©thode de dĂ©composition de domaine. On Ă©tudie ainsi plusieurs mĂ©thodes de parallĂ©lisation en espace : la parallĂ©lisation fine de chaque opĂ©ration coĂ»teuse, la rĂ©solution du systĂšme non-linĂ©aire par dĂ©composition en sous-rĂ©seaux faiblement couplĂ©s, d abord sur chaque Ă©tape d intĂ©gration, puis par mĂ©thode de relaxation d ondes. On aborde aussi la parallĂ©lisation en temps de type algorithme PararĂ©el ainsi qu une mĂ©thode parallĂšle espace-temps bĂ©nĂ©ficiant des propriĂ©tĂ©s couplĂ©es des mĂ©thodes de relaxation d ondes et de PararĂ©el. Dans ces travaux, nous proposons des mĂ©thodes assurant la convergence rapide des mĂ©thodes de dĂ©composition de domaine quel que soit le nombre de sous-domaines et de processeurs employĂ©s. Nous introduisons pour cela des techniques de prĂ©conditionnement en espace adĂ©quates afin d amĂ©liorer la scalabilitĂ© des mĂ©thodes de parallĂ©lisation envisagĂ©es.Power system transient stability analysis enables to control the return to equilibrium of the system subjected to a disturbance. This systematic analysis of developing transport networks allows to optimize the production and the consumption of electric power and to protect the equipments such as power plants, transformers, highvoltage lines and so on. In order to improve the stability, the robustness, and the sustainability of these systems, a worldwide trend is to interconnect regional and national transport networks. This leads to analyze ever larger systems. The power-stability problem can be numerically simulated owing to the integration of a differential-algebraic system which is nonlinear and stiff. When considering a very large problem, numerical simulation is very time consuming and significantly slows down the work of professionals. This thesis aims at studying innovative parallel computing methods for the resolution of differential systems arising from the transient stability analysis of large power systems such as the European Transport Network. In this manuscript, we first deliver an analysis of the properties of these rather specific systems: sparse, irregular, nonlinear, stiff, and heterogeneous. We discuss the particular structure of these systems making the application of a domain decomposition method interesting. Thus, we study several space parallelization methods: the fine parallelization of each costly tasks, the resolution of the nonlinear system by decomposition into weakly coupled subnetworks, first on each integration step separately, and then by waveform relaxation method. We also address the time parallelization with a Parareal-based algorithm and a space-time parallel method which benefits from the coupled properties of waveform relaxation and Parareal methods. In this work, we focus on methods which ensure a fast convergence of domain decomposition methods whatever the number of subdomains/processors used. In order to achieve such a goal, we introduce space preconditioning techniques to improve the scalability of the parallelization methods considered.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Harnessing clusters of hybrid nodes with a sequential task-based programming model

    Get PDF
    International audienceRuntime systems usually abstract a single node. The Sequential Task Flow (STF) model has been proven efficient on shared memory applications. When harnessing cluster of nodes, how should they communicate? By using explicit MPI user calls ? By using a specific paradigm ? Or can we keep the same STF paradigm and almost the same code, and leave the runtime system handle data transfers? We show how such a system has been sucessfully implemented on top of the StarPU runtime
    corecore