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Décomposition en valeurs singulières randomisée
et positionnement multidimensionel à base de

tâches

Résumé : Le positionnement multidimensionnel (MDS) est un algorithme
important et robuste pour représenter les cas individuels d’un ensemble de don-
nées en fonction de leurs dissimilarités respectives. Cependant, des approches
heuristiques, qui peuvent induire un compromis en termes de robustesse, sont
souvent préférées en pratique en raison de de la consommation mémoire et des
coûts potentiellement prohibitifs du MDS. L’introduction récente de techniques
de projection aléatoire dans le MDS lui a permis de devenir compétitif sur des cas
test plus importants. L’objectif de ce manuscrit est de proposer un MDS haute
performance basé sur la projection aléatoire pour le traitement d’ensembles de
données de taille encore plus grande (jusqu’à un million d’éléments). Nous pro-
posons une conception de l’algorithme et nous l’implémentons dans une pile
logicielle efficace, comprenant des solveurs numériques de pointe ainsi des sys-
tèmes d’exécution et des couches de communication optimisés. L’aboutissement
de ce travail résultat est la capacité d’appliquer efficacement le MDS robuste
à de grands ensembles de données sur des super-ordinateurs modernes. Nous
évaluons l’algorithme et la pile logicielle résultants à la visualisation de nuages
de points pour l’analyse des distances entre séquences de metabarcoding.

Mots-clés : programmation à base de tâches, décomposition en valeur
singulière randomisée, positionnement multidimensionel, projection aléatoire,
mémoire distribuée, machine hétérogène, moteur d’exécution
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1 Introduction

Points in large dimension spaces are often expected to live on an unknown small
dimensional manifold, and the question is how to reveal it. Many methods have
been proposed to do so such as Sammon mapping, curvilinear component anal-
ysis, stochastic neighbour embedding and t-SNE, isomap, Laplacian eigenmaps,
just to present the diversity of available methods (here, nonlinear, with a global
survey [1]). Those methods reach limits in time for, say, 10,000 items or more.
An old classical method is the multidimensional scaling (MDS) [2, 3, 4], reviewed
in [5]. From a numerical point of view, the MDS or SVD-MDS essentially resorts
to processing the singular value decomposition (SVD) [6, 7] of an input matrix
built from representing dissimilarities between pairs of items. When dealing
with large data sets, an SVD may be out of reach due to memory or time to
solution constraints, even when performed on a distributed-memory machine.
For these reasons, large scale MDS is often processed with heuristic approaches,
which may yield good results in practice, though no guarantee can be provided
on their quality. A major step forward has been the design of randomized SVD
(RSVD) [8, 9] algorithms in the 2000’, a probabilistic, fast approach, ensur-
ing the quality of the solution via random projections. Its usage within the
MDS (RSVD-MDS) [10, 11, 12, 13], has allowed to process large data sets while
preserving the numerical robustness [13] of the standard SVD-MDS.

The objective of this article is to design a high-performance distributed-memory
RSVD-MDS for processing data sets of even larger size (up to one million items).
We propose a task-based design of the whole RSVD-MDS algorithm and we im-
plement it within an efficient software stack including state-of-the-art numerical
solvers, runtime systems and communication layers. The outcome is the ability
to efficiently apply robust MDS to large data sets on modern supercomputers.
We assess the resulting algorithm and software stack to the point cloud visual-
ization for analyzing distances between sequences in metabarcoding [14, 15, 16].

Inria



Task-based RSVD and RSVD-MDS 5

The rest of the article is organized as follows. In section 2, we review the numer-
ical (MDS, SVD and RSVD) and computational (the task-based programming
model as well as the runtime and communication layers) building blocks we rely
on and present related work. We then present our contributions in section 3
consisting of the design of a fully task-based MDS and the fine tuning of the
whole software stack to execute this algorithm. In section 4, we assess it in the
context of an application to metabarcoding before presenting our conclusions
and perspectives in section 5.

2 Background

2.1 Numerical components

2.1.1 MDS

Before presenting the method itself, we propose a short and partial early his-
torical digression on the original motivations for the term scaling in MDS, as
it may otherwise be ambiguous in a high performance context. Representing
items onto a linear continuum (a one-dimensional space in modern terminology
or simply a scale) may be loosely related to measure theory and thus to some
extent for instance dated back to Ancient Greece when Archimedes tried to
calculate the area of a circle. This idea has been pushed very far in the early
twentieth century, in particular by the psychology community who developed
advanced methods to design scales onto which positioning judgements (see e.g.
[17, 18]) or other non trivial concepts. However, if such a traditional scaling
method (design of scale and positioning of items onto it) was very elaborated in
the one dimensional case (representing the information onto a linear continuum
only, i.e. along one axis), it remained to design a robust process in the multidi-
mensional case (representing the information along multiple well chosen axes).
The popularization [19] in the main psychometric journal of the truncated SVD
(TSVD) [20], a fundamental mathematical tool, opened the door for the robust
extension of such scaling procedures to the multidimensional case. Built on top
of the TSVD, the muldimensional scaling (MDS) method [2, 3] may be viewed
at retrieving the most relevant possible multidimensional scale for a prescribed
dimension. As it was immediately noted [19], when the matrix is (square and)
symmetric (as it is the case in our context), the SVD and the eigenvalue value
decomposition (EVD) coincide up to the sign of the eigenvalues. MDS may thus
be equally viewed as based on TSVD or truncated EVD (TEVD). We employ
the SVD/TSVD term and rely on it in this manuscript, following [10, 11, 12].

MDS has been continuously enriched since these very early developments and its
modern treatment is only loosely related to this early vision. There exists many
excellent textbooks presenting it such as [5] or [21, chap. 13]. A classical and
rigorous reference with many results, their demonstration and history is [22].
We refer to this literature for a thorough presentation of the MDS and now
only propose a short (but, we hope, progressive) introduction to the method,
following [5, chap. 2]. Let M = (E, d) be a discrete metric space of m points
endowed with a distance d (in what follows, d can be a dissimilarity too). Let

RR n° 9482



6 Agullo & Coulaud & Denis et al.

kMDS ∈ N be an integer. MDS [2, 3, 4] aims at building a map x:

i ∈ E x−−−−→ xi ∈ RkMDS (1)

such that the norms of the distances ‖xi − xj‖2 between points xi and xj in
RkMDS are as close as possible to d(i, j). The implicit assumption is that the
distances d(i, j) are known (they are the input data of the problem) and come
from an unknown point cloud X = (xi)i (the output data to be computed) in a
Euclidean space. The objective is to recover X and approximate it as accurately
as possible for a prescribed dimension kMDS. In the following, we will denote
by D = (dij)i,j the m × m input pairwise distance matrix. Assuming the
Euclidean space is endowed with a given inner product 〈., .〉, we furthermore
denote by G = (gij)i,j the m×m matrix of inner products gij = 〈xi, xj〉, often
referred to as the Gram matrix. The solution comes from the observation that
the Gram matrix G can be built from the distance matrix D. Indeed, in a
Euclidean geometry, G and D are related through the law of cosines by:

d2
ij = gii + gjj − 2gij . (2)

To obtain the gij coefficients of G from the dij coefficients of D, it remains to
express the diagonal coefficients (gii)i (and thus (gjj)j) in terms of coefficients
of D. To do so, we fist remark that two isometric point clouds cannot be
discriminated through the distance between their points, inducing that X can
be recovered up to an isometry only. In particular, without loss of generality,
we may thus assume that the point cloud X is centered, which imposes:∑

j

gij = 〈xi,
∑
j

xj〉 = 0, (3)

i.e., the sum of each row of the Gram matrix is zero. Noting d2
i+ =

∑
j d

2
ij ,

d2
+j =

∑
i d

2
ij and d2

++ =
∑

ij d
2
ij , we may then sum (2) over j. We obtain that∑

j d
2
ij =

∑
j gii +

∑
j gjj−2

∑
j gij , By definition of d2

i+, by (3), and reminding
that

∑
j gjj is the trace of matrix G (i.e. Tr(G) =

∑
j gjj), it translates into

d2
i+ = ngii + Tr(G), yielding gii = 1

n (d2
i+ − Tr(G)). To obtain an explicit

expression for gii, it remains to obtain an expression of the trace of G, which
can be done by summing (2) over both i and j, yielding d2

++ = 2nTr(G).
Finally, the Gram matrix G may therefore be written from the distance matrix
D as follows:

gij = −1

2

(
d2
ij −

1

n
d2
i+ −

1

n
d2

+j +
1

n2
d2

++

)
. (4)

This computation of G out of D through (4) is the first step of MDS (line 1
in Algorithm 1, referred to as GRAM in the rest of the paper). It remains to
deduce X ∈ Rm×kMDS from G. First, we remind that, by its above definition,
G = XXt. Second, as G is symmetric, it admits a unitary diagonalization so
that its EVD may writes G = UΛUT where Λ is diagonal and U is unitary. In
the case G is semi-definite positive, Λ has non-negative diagonal values and we
may thus write X = UΛ1/2. Otherwise, the most common heuristic consists in
keeping only the k+ non-negative eigenvalues Λ+ and associated eigenvectors

Inria



Task-based RSVD and RSVD-MDS 7

U+ and considering X ' U+Λ+1/2. This is in practice required to relax the
hypothesis that D is a Euclidean distance matrix (and furthermore support the
case where it is only a dissimilarity matrix, i.e. the triangular inequality does
not need to hold). We follow this path except that, as mentioned above, we
proceed through an SVD of G. To do so, one may notice that the EVD of G
may also write G = U |Λ|sign (Λ)V T , where |Λ| is the diagonal matrix whose
diagonal values are the absolute values of the eigenvalues and sign (Λ) is the
diagonal matrix whose diagonal values are the signs of the eigenvalues. If we
note Σ = |Λ| and V = sign (Λ)U , we observe that we also have G = UΣV T ,
which is an SVD of G (see below in section 2.1.2). Therefore, we compute the
SVD UΣV t = G of G (line 2). We name this step RSVD as we proceed it with
an RSVD (see below) and we will come back later on the details of the CHECK
step (line 3). Once the SVD is obtained, following the above common filtering
heuristic singular vectors such that v = −u are ignored and clipped off from U
(line 4, Compute_X (1/2)). Hence, we have G ' U+Σ+U+t, with U+ ∈ Rm×k+

and Σ+ ∈ Rk+×k+

if k+ eigenvalues of G are non negative. X can thus be
computed as X ' U+Σ+1/2 (line 5, Compute_X (2/2)). Finally, the solution of
MDS is provided by returning the information associated with the part XkMDS

of the map X associated with the kMDS (assuming kMDS ≤ k+, which is the case
in practice as a reasonably small kMDS is most often targeted) largest singular
values (line 6).

Algorithm 1: MDS: (X,Σ) = MDS(D, kMDS)

Input: a distance matrix D ∈ Rm×m; a dimension kMDS ≤ m //
READ_D

Output: a set of points XkMDS , ΣkMDS the largest singular values
associated with positive eigenvalues // WRITE_X

1 Compute the Gram matrix of D: G = gram(D) // GRAM
2 Compute the SVD of G: UΣV t = G // RSVD

3 Check τ = ‖Σ‖F
‖G‖F

?
> τmin = 1.0− ε // CHECK

4 Compute U+ and Σ+ by discarding in U all columns u such that
v = −u and corresponding terms in Σ // Compute_X (1/2)

5 Compute X = U+Σ+1/2 // Compute_X (2/2)
6 return XkMDS ,ΣkMDS , associated with the kMDS largest singular values

2.1.2 SVD

The SVD [6, 7] of a real rectangular matrix A ∈ Rm×n consists of the factor-
ization of the form A = UΣV T where Σ ∈ Rm×n is a diagonal rectangular
matrix whose diagonal entries σi = Σi,i are non negative, ranged in decreasing
order, and referred to as the singular values and U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices representing the so-called left and right singular vectors,
respectively. In practice, the SVD is stored in a compact form. Assuming A
is of rank r ≤ min(m,n), Σ ∈ Rr×r is stored as a diagonal square matrix and
U ∈ Rm×r and V ∈ Rn×r are stored as rectangular matrices with orthogonal
columns. A major breakthrough in the numerical computation of the SVD has
been proposed by Golub et al. [23, 24, 25]. We refer the reader to [26] for
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8 Agullo & Coulaud & Denis et al.

details and to [27, 28] for an early history. The SVD plays a central role in
data analysis because it can been shown that keeping the information related
to the first k singular values, referred to as a truncated SVD (TSVD) [20] at
rank k, consists of the best approximation in commonly employed norms such
as 2-norm among all possible rank k approximations of A.

In our context, it has been shown [10, 11, 12] that we can rely on a much
faster algorithm than a deterministic SVD, the SVD with random projection
[8, 9]. In this algorithm, a deterministic SVD is still required but with much
lower dimensions, such that it is not critical to have a fast distributed-memory
deterministic SVD to ensure the efficiency of the overall algorithm. We refer the
reader to [29] for a detailed review of HPC (deterministic) SVD developments
and we instead focus here on the SVD with random projection, or, for short,
randomized SVD (RSVD). We will employ it in the SVD step of our MDS and,
for this reason, we will refer to the step associated with line 2 in Algorithm 1
as RSVD in the rest of the paper. Because the RSVD results in an approximated
SVD, we assess its quality. This is why the MDS (Algorithm 1) is enriched
with a CHECK step at line 3. This check consists in measuring the part τ of the
information captured by Σ among G through their relative Frobenius norms
(τ = ‖Σ‖F

‖G‖F ) and verifying that it is large enough (τ > τmin = 1.0 − ε, with
ε = 10−3, being satisfying for the target test case, see section 4.1).

2.1.3 Randomized SVD

Let A ∈ Rm×n be a matrix with m ≥ n. The number of floating point opera-
tions (flop) of the SVD is O(mn2) and it becomes unaffordable for large values
of m and n. Alternatively, randomized algorithms are very efficient algorithms
with bounds on errors, to compute the first singular values and vectors in a
reasonable amount of time and memory [8]. One of them is the recently devel-
oped RSVD [30, 31]. The main idea is to approximate the column space of the
matrix A by only a small number of vectors through a linear combination of
the columns (lines 1-2 in Algorithm 2, in the following referred to as RAND and
GE1, respectively) and orthogonalize (line 3, QR1 and Q1) them to obtain a basis
(Q) of an approximation of the range of A. Then, the matrix A is projected
onto this space (line 4, GE2) and factorized via a (deterministic) SVD (line 5).
After this step, the right singular vectors V are obtained whereas it remains to
explicitly form the left singular vectors U (line 6, GE3).

Algorithm 2: Random projection SVD: (U,Σ, V ) ' RSVD(A, k)

Input: A a m× n matrix, k a prescribed rank
Output: an approximate factorization A ' UΣV T

1 Draw a n× k Gaussian random matrix Ω // RAND
2 Form the m× k matrix Y = AΩ // GE1
3 Compute the QR decomposition of Y : QR = Y // QR1, Q1

4 Form the n× k matrix C = ATQ // GE2

5 Compute the SVD of C: UCΣV T
C = C // QR-SVD

6 Form the matrix U = QVC and note V = UC // GE3
7 return U,Σ, V

Inria



Task-based RSVD and RSVD-MDS 9

The procedure for approximating the range of A consists in considering Ω a ran-
dom n × k matrix and performing the matrix-matrix product Y = AΩ (where
Y is then a m× k matrix). There are several ways to choose Ω [8]. We here re-
strict ourselves to the Gaussian distribution, i.e. Ω is a random Gaussian matrix
whose coefficients satisfy the standard normal distribution N (0, 1). Usually, for
a good precision at rank k, it is advised to select Ω as n × k′ with k′ = k + s,
where s is called the oversampling. Because taking s as low as s = 5 or s = 10
is often (and in particular in this study) sufficient [8], we do not distinguish k
and k′ in the rest of the article. We also assume k � min(m,n), which is also a
reasonable practical hypothesis in general and in the particular metabarcoding
case study we consider here (where, in addition m = n, as the RSVD is called
on an input square matrix A consisting of the Gram matrix G of the MDS).
A m × k matrix with such dimensions k � m is often referred to as tall and
skinny and this shape can be computationally exploited following Algorithm 3
to reduce the complexity of the SVD with respect to the original developments
from [23, 24, 25]. The idea is to first compute the QR factorization (line 1 in
Algorithm 3, referred to as QR2 and Q2 in the following) of the matrix whose
SVD is sought. Doing so, it only remains to process a k × k matrix (R) with
the standard (such as [25] or one of its recent derivatives [26]) SVD algorithm
(line 2 in Algorithm 3, k×k SVD) before reconstructing the left singular vectors
U (line 3, GE4). Such a QR-SVD approach was first proposed by Lawson and
Hanson [32] and further analyzed by Chan [33]. The original motivation was the
reduction of the computational complexity. In a distributed-memory context,
it is also an opportunity for ensuring a separation of concerns: ensuring only a
fast m × k distributed-memory QR factorization while relying on a sequential
(or shared-memory) k × k standard SVD. We will employ such a QR-SVD al-
gorithm to process the deterministic SVD step of the RSVD algorithm, this is
why lines 5 in Algorithm 2 will be referred to as QR-SVD in the following.

Algorithm 3: QR-SVD algorithm: (U,Σ, V ) = QR-SVD(A)
Input: A a n× k matrix
Output: a factorization A ' UΣV T

1 Compute the QR decomposition of A: QR = A // QR2, Q2

2 Compute the SVD of the triangular matrix R: URΣV T = R // k × k

SVD
3 Form the matrix U = QUR // GE4
4 return U,Σ, V

The overall RSVD-MDS we propose to rely on thus consists of the MDS algo-
rithm (Algorithm 1) for which the SVD (step 2) is processed with an RSVD
(Algorithm 2) for which the input m×n matrix A is the m×m Gram G matrix
of the MDS, in particular involving that the RSVD is processed on a square
matrix (m = n). The internal deterministic SVD step within the RSVD (step
5 in Algorithm 2) is itself processed with a QR-SVD (Algorithm 3). We also
highlight that, in addition to the prescribed rank kMDS of the baseline MDS
algorithm (Algorithm 1), the RSVD-MDS algorithm is also parameterized with
the dimension k of the randomization and must satisfy kMDS ≤ k+ ≤ k, which
we do positively check (see 4.3). The dimensions m and k drive the computa-
tional load of the RSVD and RSVD-MDS algorithms. On the other hand, the
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10 Agullo & Coulaud & Denis et al.

kMDS parameter is only used in the ultimate step of the MDS, essentially de-
pends on what the MDS is used for (for instance, if the goal is to obtain a point
cloud visualization, it corresponds to kMDS = 2), and does not significantly
impact the computational load. As a consequence, the performance study will
be parameterized with m and k only.

It is to be noted that the randomization technique we employ breaks the symme-
try when forming the approximate matrix QQTA. However, in our context, the
QQTA approximation is an excellent approximation of A so that the symmetry
is almost preserved and does not significantly impact the numerical result. We
will check (and confirm) it in 4.3. Alternatively, a symmetry-preserving ran-
domization technique [8] might be employed but that was not necessary in the
present study and will not be further discussed in the paper.

2.2 Related work on distributed-memory RSVD and MDS

The term MDS has been ambivalent in the literature. In the present manuscript,
it corresponds to "classical MDS", as pioneered by [4, 3]. In 1964, J. B. Kruskal
issued a paper [34] with the same name, MDS, but another approach, even if
related. The aim is to minimize on X a so-called stress function of the form
Φ(X) =

∑
i<j (‖xi − xj‖ − dij)2, where (dij)i,j are dissimilarities, (xi)i points

in a Euclidean space, and X the set of points. It is not a linear algebra method,
but a hard nonlinear optimisation problem. It is nowadays known as Least
Square Scaling (LSS), to avoid confusion with classical MDS [5, 22, 21, 35].

To the best of our knowledge, no distributed-memory classical MDS had been
proposed before this study. However, multiple propositions have been discussed
for designing distributed-memory LSS [36, 37, 38, 39, 40]. They all rely on a
full MPI [41] parallelization scheme. Zilinskas and Zilinskas designed the paral-
lelization of a genetic LSS algorithm, assessed on up to 24 cores [36]. Pawlizeck
and Dzwinel considered a heuristic based on particle dynamics simulation to
find the minimum of the stress function. They validated their approach up to
144 cores [38]. The last three LSS parallelization schemes are based on a non
trivial variant of the gradient descent algorithm. The method is named Scaling
by MAjorizing a COmplicated Function (SMACOF) [42]. At each iteration of
the SMACOF algorithm, the dominant part is a matrix-matrix product to up-
date the points. The parallel design proposed by Bae was initially assessed up
to 8 cores [37], and extended up to 256 cores [40, 39], obtaining an efficiency of
70% for dataset of size 100, 000× 100, 000.

The RSVD itself, at the core of the present manuscript, has been parallelized
for shared-memory [43] and GPU-accelerated [44, 45] single-node machines but,
to the best of our knowledge, not for distributed-memory machines.

To the best of our knowledge, the present study is the first task-based RSVD
(and MDS). It allowed us to perform a "classical MDS" at an unprecedented
scale, in terms of both size (up to 1, 000, 000,×1, 000, 000 distance matrices)
and number of computational units (up to 2,400 CPU cores in the homogeneous
case, and 640 CPU cores enhanced with 64 GPUs in the heterogeneous case).
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2.3 Task-based programming

With the advent of supercomputers composed of a large number of multicore
nodes enhanced with accelerators (such as GPUs) in the 2010’s, the HPC com-
munity has faced a dilemma: shall numerical codes for scientific simulation and
data analysis continue to be written with relatively low-level primitives for han-
dling parallelism or be tackled with a higher level of abstraction? The former
approach allows the programmer to directly specify all parallel directives to care-
fully exploit the whole potential of the hardware, but requires to develop and
maintain complex codes combining multiple levels of parallel expressions such as
message passing for inter-node communications, multithreading for exploiting
multicore chips and vendor primitives such as cuda for exploiting GPUs. The
latter approach, though more exploratory, has shown a few successful accom-
plishments during the last decade. In particular, the task-based programming
paradigm has been shown to significantly reduce the difficulty of programming
these complex machines, delegating the burden of handling data consistency or
advanced scheduling strategies to third party software such as runtime systems.

One of the challenges of task-based programming for the developers of numerical
libraries or applications is to deliver the same performance as competitors based
on lower level parallel schemes, as part of the control has been delegated to
another entity, the runtime system. That being said, because that entity is not
aware of the numerical scheme, it may take care of successive numerical steps
as if they were a single algorithm and pipeline these steps efficiently, avoiding
unnecessary synchronization points.

In the last fifteen years, a new class of task-based runtime systems such as
starpu [46], PaRSEC [47], SuperGlue [48], OmpSs [49], to name a few, has been
proposed to better take advantage of multicore, manycore and heterogeneous
accelerated architectures. From a programming point of view, many of those
initiatives process a sequential series of tasks as the input algorithm. The tasks
operate on data for which the programmer provides the data access mode (Read
(R), Write (W) or Read-Write (RW)). Based on this information, dependencies
between tasks may be inferred. The code may then be represented by a directed
acyclic graph (DAG) where vertices are tasks and edges dependencies between
them. This includes tasks for the computation parts of the application, but also
the data input/output from/to the disk and from/to the network. This program-
ming model is sometimes referred to as Sequential Task Flow (STF) [50, 51] and
is supported by a large number of runtimes, including OpenMP since revision
4.0 (through the task construct and depend clause inspired from OmpSs), starpu
with the default configuration and PaRSEC through its dynamic task discovery
(DTD) mode. In addition to the ease of programming it provides (only a task-
based sequential code is requested), the strength of this paradigm is that the
runtime system has a complete and precise high-level view (the DAG of tasks)
of the composition of the application. As a consequence, it can automatically
delegate ready tasks to workers (typically threads associated with CPU cores
or GPUs in the heterogeneous case) and perform many optimizations, including
using advanced scheduling heuristics, ensuring data transfers to/from the disk
and the network concurrently with computational tasks.

We have shown in [50] that the STF programming model can be efficiently

RR n° 9482

https://gitlab.inria.fr/starpu/starpu
https://gitlab.inria.fr/starpu/starpu
https://gitlab.inria.fr/starpu/starpu


12 Agullo & Coulaud & Denis et al.

employed in a distributed-memory context to automatically manage the distri-
bution of tasks over nodes of a cluster, by producing the corresponding data
transfers over the network. The principle, further described in [50], is the fol-
lowing. The application instructs the runtime about the distribution of data to
be used over the nodes of the cluster. For dense linear algebra this is typically a
block-cyclic distribution for instance. This is named the owner node of a data.
On each node, the application unrolls the whole task graph of the whole com-
putation. On each node, the runtime system automatically determines which
tasks of the graph should be performed by the node: if and only if it owns the
data that is written to by the task. This is deterministic, and thus all nodes
automatically agree on which of them will perform each task, without having
to exchange any message. On each node, the runtime system automatically
determines which network transfer should be performed: if the node executes
the task, it has to receive the data it does not own from the nodes that own it;
if the node does not execute the task, it has to send the task input data that it
owns to the node that will execute the task. Additionally, the runtime system
caches data to avoid multiple transfers of the same data. We will rely on this
model to design our task-based RSVD-MDS.

Writing a task-based code in the STF model is twofold. First, the data struc-
tures must be designed and declared to the runtime system, we will refer data
declared to the runtime to as data handles. Second, the sequence of tasks op-
erating on those data handles must be written. Although the code is written
sequentially, the challenge is to design data structures and algorithms with ap-
propriate granularity (a too low granularity may cost overhead due to runtime
management and a too coarse granularity may prevent parallelism) and concur-
rency opportunities.

2.4 Software

Executable

MDS

C++

FMR
Randomized SVD

C++

Chameleon
GEMM, QR, Gram

C

StarPU
Task scheduling

C

OpenMPI/Nmad
Communications

C

Figure 1: Software stack.

We propose to implement the above RSVD-MDS task-based algorithm within a
software stack composed of five layers as depicted in Figure 1. We here present
these five building blocks as they were at the beginning of the project (and
will explain later in section 3 how they have been enriched and arranged as
a software stack for the purpose of the study). The first top three layers are
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mathematical software while the last two ones are runtime supports. At the
top, the mds application loads input files from disk to main memory (distance
matrix D in Algorithm 1) with which it computes the Gram matrix G. In
the second layer, fmr implements the RSVD (Algorithm 2). The coupling of
the mds application with fmr to implement an RSVD-MDS was pre-existent
to the project [10, 11, 12]. Both the MDS application and fmr were relying
on BLAS/LAPACK [52] dense linear algebra kernels and were hence limited
to single-node machines. The goal of this study being to design a task-based
RSVD-MDS for distributed-memory machines, we decided to rely on a state-of-
the-art dense linear algebra task-based library. We chose the Chameleon solver
[53, 54, 55, 50], our third layer, for that purpose. It is based on tile algorithms
[56]. As many dense linear algebra algorithms, tile algorithms operate on ma-
trices partitioned in square (or possibly rectangle) submatrices, often referred
to as blocks in the literature. Contrary to most of their past literature, their
main innovation is that these algorithms were thought and re-designed to en-
sure the highest possible level of pipelining of the computational tasks [56]. In
this context, submatrices or blocks, are referred to as tiles. The plasma library
[57, 58] was the first fully-featured dense linear algebra library following this
tile design, with shared-memory multicore machines in mind. chameleon is an
extension of plasma to heterogeneous [53, 54, 55], and distributed-memory [50]
machines. The main idea is to benefit from the great concurrency opportunities
of these algorithms while delegating the effective parallelization to a runtime
system. As a consequence, chameleon may be viewed as a tile-based dense linear
algebra library where tiles are declared to the runtime as data handles (see sec-
tion 2.3). Though not fully-featured, chameleon provides a large subset of the
BLAS/LAPACK standards. In particular, it provides multiple linear algebra
routines required for designing our RSVD and RSVD-MDS on top of it, though
it has been necessary to design or improve some of the routines, as detailed in
section 3.

chameleon may be executed on multiple runtime systems (including starpu,
ParSEC and OpenMP). We chose to focus on the usage of the starpu [46] back-
end as we showed it can support the STF programming model in a scalable
fashion [50]. The fourth layer is thus the starpu task-based runtime system. It
manages the concurrency, schedules the tasks and handles the data consistency.
In a distributed-memory setting, starpu delegates data transfers to a fifth layer,
the communication engine. starpu supports two such engines being coupled
either with MPI [41] or with newmadeleine [59, 60], a fully multithreaded high-
performance communication library. Most experiments (see section 4.5 and
section 4.6) will be carried with the MPI communication back-end using the
OpenMPI implementation of the MPI standard whereas the scalability will be
eventually further assessed using newmadeleine as a prospective (see section 4.7).

3 Contribution

The main contribution of this article is the design of a high-performance distri-
buted-memory task-based RSVD (section 3.1) and RSVD-MDS (section 3.2)
following the STF programming model [50] discussed in section 2.3. This de-
sign essentially consists in coupling the numerical steps of the fmr and mds
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high-level codes (top two levels of the stack, see section 2.4 and Figure 1 in
particular) with the task-based chameleon dense linear algebra library (third
level of the stack). In addition, the complexity (section 3.3) of the proposed
RSVD and RSVD-MDS, comforted by a preliminary performance analysis not
reported here, motivated us to pay further attention to the matrix multipli-
cation, the dominant numerical operation, leading us to refine the original
chameleon baseline matrix multiplication to follow a SUMMA [61] communica-
tion pattern (section 3.4). While I/Os were a small part of the computation at
the beginning of this project, the efficiency of our task-based RSVD and RSVD-
MDS changed the game, the I/Os becoming a non negligible part of the overall
execution time of the mds application. We have therefore proposed a task-based
management of the I/Os (section 3.5) to further pipeline the overall workflow.
All these algorithms have been implemented in a software stack (see Figure 1)
crafted with care (section 3.6).

3.1 Task-based RSVD

We present the task-based design within fmr of the RSVD proposed in sec-
tion 2.1, consisting in an RSVD (Algorithm 2) whose internal tall and skinny
SVD (line 5 in Algorithm 2) is processed with a QR-SVD (Algorithm 3). The
input matrix A of the RSVD (Algorithm 3) is assumed to be provided as a tile
matrix (we remind that the concept of tile is presented in section 2.4). In the
context of the RSVD-MDS, this input matrix will be the Gram matrix G and we
will explain how to produce it in tile layout in section 3.2 and section 3.5. The
mds and fmr codes, originally thought for dealing with BLAS/LAPACK matrices
and routines on shared-memory architectures, have thus been fully re-designed
to cope with tile matrices on distributed-memory machines. In addition, the
chameleon library has been integrated to process linear algebra operations in-
stead of BLAS/LAPACK. From a software engineering point of view, actually,
the matrix format and operation handlers have been abstracted so that we can
choose between the original centralized version using BLAS/LAPACK or the
new distributed-memory tile layout using chameleon.

The RAND (line 1 in Algorithm 2) operation for generating the random matrix
Ω has been implemented through a call to the p?plrnt1 (non blocking, parallel)
chameleon random matrix generator, similar to the one used by HPL, which
generates the matrix in an embarrassingly parallel manner. The GE1 (line 2 in
Algorithm 2) matrix multiplication has been implemented through a call to the
p?gemm general matrix multiplication routine of chameleon. The QR factorization
(line 3) actually consists of two successive calls: ( QR1) a call to the chameleon
p?geqrf general QR factorization. Similarly to LAPACK ?geqrf, it produces
R as a formed matrix but Q is implicitly returned through its Householder
reflectors. Therefore, we furthermore ( Q1) perform a call to the chameleon
p?orgqr orthogonal generation routine for explicitly forming the matrix Q. Once
Q has been formed, the product C = ATQ ( GE2, line 4) can be processed
through a standard general matrix multiplication operation, hence once again

1 chameleon nomenclature follows the BLAS/LAPACK/ScaLAPACK conventions, p
standing for parallel, ? being among d (double), s (single), z (double complex) or c
(single complex) precision, pl standing for plasma (from which chameleon is inherited), rn
for random number (generator), and t specifying the tile layout.
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through a chameleon p?gemm call2. The QR-SVD step (line 5) has been implemented
internally within fmr, we describe it below. It explicitly retrieves VC as a formed
matrix, therefore the ultimate step U = QVC ( GE3, line 6) is also processed with
a standard general matrix multiplication through a chameleon p?gemm call.

The QR-SVD step (Algorithm 3, called at line 5 in Algorithm 2) has been imple-
mented internally within fmr as follows. For the same dimension motivations
as above, the QR decomposition (line 1 in Algorithm 3) is performed through
two calls: ( QR2) a call to chameleon p?geqrf for performing the QR factorization
followed by ( Q2) a call to the chameleon p?orgqr for explicitly forming matrix Q.
The k× k R we obtain being of small dimension, it is centralized and processed
with (a deterministic) LAPACK ?gesvd SVD call (k× k SVD, line 2). Q and UR

being formed at this stage, their final product U = QUR ( GE4, line 3) is once
again simply performed by a standard general matrix multiplication through a
chameleon p?gemm call.

3.2 Task-based RSVD-MDS

We now present the task-based design within the mds application of the overall
RSVD-MDS (Algorithm 1) proposed in section 2.1. The input distance matrix
D of the MDS is assumed to be pre-computed (see section 4.1) and stored on
disk in hdf5 format. Following a tile algorithm design, our task-based RSVD
aims at reading it from disk and arranging it into a distributed-memory tile
matrix ( READ_D in Algorithm 1). Multiple strategies for doing so have been
investigated and are discussed in section 3.5. For now, we simply assume that
D has been read and arranged into a distributed-memory tile layout and focus on
the numerical steps. Similarly to most distributed-memory dense linear algebra
algorithms, the matrix is distributed according to a block-cyclic pattern (see
e.g. Figure 3, right). The code is able to handle both 1D and 2D block-cyclic
distributions.

The first numerical step of the MDS is the computation of the Gram matrix
G from the distance matrix ( GRAM, line 1 in Algorithm 1). As we had no task-
based routine at our disposal, we implemented a task-based GRAM algorithm.
From a data access point of view, GRAM is a reduction-like algorithm and is
mainly communication-bound. A per-column reduction (the per-row reduction
is avoided by symmetry) is performed to compute all the d2

+i (and d2
i+ by sym-

metry) while a complete reduction is performed to compute d2
++. We followed

the design of the norm computation available in the chameleon library and il-
lustrated in Figure 2. In the context of the Gram matrix computation, note
that after the distributed row reduction (step 3 in Figure 2), all the d2

i+ values
are computed in small vectors of the same size as the tiles. The reduction is
then pursued up to the distributed column reduction (step 6 in Figure 2) in
order to obtain the d2

++ value. Finally, an embarrassingly parallel update of

2It is to be noted that it would also be possible after the QR factorization ( QR1) to
directly apply Q (stored as Householder reflectors) to AT through a p?ormqr call. However,
in the BLAS/LAPACK/ScaLAPACK standard, such a call is performed in-place, overwriting
A. In our context, A being the dominant matrix, this would induce a major memory and
performance penalty. An option would be to consider a non standard out-of-place p?ormqr
routine, but this is out of the scope of the present work.
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each tile of the matrix is submitted. Each task computes the final gij values
with the respective vectors from the Step 3 and the final value from the Step 6.
This task-based GRAM algorithm has been incorporated within chameleon as a
p?gram routine and the GRAM step of the mds application now consists in a call to
that routine.
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Figure 2: Task-based GRAM tile algorithm

The second numerical step ( RSVD, line 2 in Algorithm 1) is the SVD, effectively
computed with an RSVD in the considered RSVD-MDS algorithm. The mds
application has been modified to call the fmr task-based RSVD routine presented
earlier in section 3.1. Σ being diagonal, its Frobenius norm is immediate to
compute and the third step ( CHECK, line 3 in Algorithm 1) therefore essentially
consists in computing the Frobenius norm of G. The mds application has been
modified to call the chameleon p?lange norm computation routine to do so. The
last two steps of the MDS consist in computing matrix X ( Compute_X) through
X = U+Σ+1/2 (line 5 in Algorithm 1) based on the filtered (line 4 in Algorithm
1) output (U+,Σ+) of the (R)SVD and scaling each column i of U+ to compute
X ' U+Σ+1/2. We have developed a task-based algorithm with a loop over
tiles of U to copy the columns of interest into U+. Then to compute the scaling
we use an internal chameleon map facility to perform the multiplication of each
column of U+ by σ+1/2. The map facility consists of a task-based loop over tiles
offering the opportunity to apply an operator on each tile individually.

3.3 Complexity and key performance steps of the result-
ing RSVD and RSVD-MDS algorithms

The flop count of the RSVD (Algorithm 2) is dominated by GE1 and GE2 ma-
trix multiplications and satisfies RSVD (m,n, k) ∼m,n→∞ 4mnk (we refer ap-
pendix A for more details). In particular, we have RSVD (m,n, k) = O(mn) as
m,n → ∞. The RSVD step (called with m = n) dominating the RSVD-MDS
(Algorithm 1), the flop count of the latter satisfies RSVD-MDS (m, k) = O(m2)
as m → ∞. In a nutshell, the GE1 and GE2 general matrix multiplication
steps are the dominant numerical operations of both the RSVD and the overall
RSVD-MDS algorithms, when considering practical dimensions (k � m = n,
see section 4.1). For these reasons, we have refined the original chameleon p?gemm
algorithm as discussed below in section 3.4. Although less critical, it may be
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noted that this outcome advanced routine will also benefit to other matrix mul-
tiplications steps ( GE3 and GE4).

Both QR factorization ( QR1 and QR2) and subsequent orthogonal generation
( Q1 and Q2) steps have a lower computational complexity than the GE1 ma-
trix dominant multiplication step. However, their tall and skinny shape had
long made them challenging to process efficiently in parallel. A new numer-
ical scheme [62, 63] has been proposed about fifteen years ago to reduce the
number of communications when processing such matrices. It has then been
demonstrated [64] that the original tile QR factorization [65] can cope with this
scheme. chameleon is based on this advanced QR factorization scheme [54] and
now includes the refinements of [66]. As a consequence, the available p?geqrf
and p?orgqr routines already include state-of-the-art techniques for performing
QR factorizations on tall and skinny matrices we target in the proposed RSVD
algorithm and no improvement was needed for the purpose of the present study.

The other numerical steps do not represent as high challenges and we therefore
do not discuss further their internal task-based design. It remains however to
explain how to arrange the sequence of calls in a distributed framework, which
is often a hard challenge to make without synchronization. In this work, as
explained in section 2.3, we rely on the STF programming model. It allows
for writing a sequential task-based algorithm and let the runtime system infer
(and handle) the dependencies between them. As a consequence, thanks for
this design, no synchronization is needed between each above discussed step.
All the p?xxxx routines discussed above are non blocking, the runtime system
being able to detect whether a particular task is ready to be triggered. As a
consequence, the whole RSVD and RSVD-MDS algorithms are fully pipelined
up to the actual numerical dependencies of the tasks. This opportunity provided
by the STF programming model has already been discussed in the literature.
However, the present study is, to the best of our knowledge, one of the pioneer
to illustrate this potential for designing an application with as many steps and
such a care in a distributed-memory framework.

3.4 Task-based SUMMA matrix multiplication

As discussed in section 3.3, in our context, the GE1 and GE2 general matrix
matrix multiplication (GEMM) steps are the dominant numerical operation of
both the RSVD and the RSVD-MDS algorithms. While a GEMM routine (
p?gemm) was already available in chameleon, the associated communication pattern
was very basic and preliminary experiments (not reported here) showed limited
performance. We have therefore designed a task-based version of the SUMMA
GEMM algorithm [61] for the purpose of the present study. More precisely,
we implemented the pipeline version of SUMMA [61]. The main idea is to
communicate both A and B matrices along a ring of communications to set up a
pipeline of computation. This avoids a potential overload of the communication
buses with a large number of broadcasts, and ensures that the local amount
of temporary data is kept under a given limit controlled by the look-ahead
parameter (number of rows/columns sent in advance). The task-based design
is inspired from [67] which was designed over the PaRSEC runtime system [47]
following a programming paradigm (sometimes referred to as parameterized task
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graph (PTG)) where dependencies are expressed explicitly and communications
can thus be tightly controlled. However, in the STF programming model we
rely on in the present work, communications are induced and are not explicitly
controlled by the programmer. Thus, to control the pipeline, we introduced
temporary working matrices WA and WB – respectively associated with the
A and B matrices to be multiplied – and whose size is proportional to the
look-ahead parameter. The task flow is enriched with copy tasks. In the STF
model, if the input and output data associated with such a copy are mapped
on different processes, it automatically translates into a communication. In
addition, we exploit the in-place reception capability of the starpu runtime
system through MPI datatypes so that such a task copy is translated into a
communication. . . without copy! This way we can indirectly (through the
insertion of copy tasks) but precisely and without overhead (no actual copy is
performed) control the communication pattern. We implemented the pipeline
version of SUMMA doing so. For example, if we use a look-ahead of 1, the first
column of A (row of B) is sent through a ring to all nodes of the same row
(column) to WA (WB), and as long as all computations involving WA are not
finished, the second column (row) can not be received, thus creating a flow of
communication and computation similar to the pipeline version of the SUMMA
algorithm. This STF pipeline SUMMA algorithm has been implemented in
chameleon and is employed for all GEMM calls ( GE1, GE2, GE3, GE4). Note that
we did not exploit the symmetry of A in the GE1 and GE2 steps, as, although it
would save memory, the symmetric matrix multiplication (SYMM) imposes an
additional challenge in terms of arithmetic intensity and we reserve it for future
work.

3.5 Task-based management of the I/Os

The MDS is performed on a square input distance matrix D (see Algorithm
1) of order m, possibly very large (beyond 106 in the target test case of the
present study). As further described in section 4.1, the matrix D is assumed to
be stored in one or several hdf5 files, which must be first read. Conversely, the
MDS eventually computes an output point cloud X of size (m, k+) and we save
the kMDS first columns (XkMDS) into an hdf5 file. I/Os are thus important in the
MDS workflow and we propose to handle them with a task-based management
in order to ensure their efficient pipeline. For a matter of conciseness, and
because D is a far larger matrix than X, and thus more impacting the overall
performance, we restrict our discussion to the reading of the input distance
matrix D ( READ_X) and report to appendix B for the design of the writing of
the output point cloud ( WRITE_X). D is thus assumed to be initially stored in
multiple hdf5 files (e.g. 6 files in the example of Figure 3, left), representing
sub-blocks Dij of the global matrix. The files store the upper part of the global
matrix, D being symmetric. These files must be read and arranged into a
tile matrix in memory (Figure 3, right). We propose three methods aiming at
reading the matrix in parallel. Preliminary tests (not reported here) showed a
better performance of the overall RSVD-MDS when arranging data into a tile
(column-wise) 1D block-cyclic distribution (Figure 3, right), which is due to the
tall and skinny pattern of the matrices involved in the numerical key steps of the
RSVD-MDS. Therefore, without loss of generality, we illustrate our discussion
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with the particular case of an output 1D block-cyclic distribution, for all three
methods (though the code also works in the 2D case). All three methods rely
on the hdf5 h5dread routine for reading (partial) dataset from an hdf5 file and
on the chameleon map facility (see section 3.2) for setting up the tiles of the
matrix in memory. The performance of these three methods will be assessed in
section 4.4.

3.5.1 Method 1: by-tile
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D33
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Figure 3: Reading the distance matrix from 6 files with the by-tile method using
3 MPI processes.

The first method consists in reading the data associated with the distance ma-
trix from disk (Figure 3, left) by-tile and directly storing it in memory in the
corresponding tile (Figure 3, right). The h5dread routine is thus called to read
a subset of the data associated with a tile of size nb × nb (e.g. nb = 320).
The algorithm is task-based, embarrassingly parallel, and allows one to load the
matrix in memory in a distributed way and with all available workers.

Although appealing from a high-level point of view, this approach actually suf-
fers from multiple drawbacks. First, although hdf5 is thread-safe, it is not cur-
rently thread-efficient when multiple threads (and as mentioned in section 2.3,
workers are managed with threads) tackle a single file – even if different parts of
the file are tackled – due to the current internal hdf5 design (through locks for
accessing the global data structure). Second, by-tile read data accesses are not
the most efficient ones. Third, concurrent accesses of multiple MPI processes
on the same hdf5 file may also lead to a reduced efficiency.

3.5.2 Method 2: by-tile + single-worker

A first refinement of the above by-tile method for alleviating the first drawback
is to restrict the execution on one single worker per node. By doing so, we
prevent workers to be busy waiting in hdf5 internal locks and therefore let them
available for other potential available tasks.

3.5.3 Method 3: hdf5-tailored

The third method in addition aims at tackling the above second and third
drawbacks. The second drawback is due to the fact that the hdf5 files we read
are stored contiguously by full rows. The idea for alleviating it is to cope with
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this disk storage arrangement when reading the data. We have subsequently
developed a task-based algorithm for reading panels of rows in hdf5 files. Panels
are of size nb×nl, nb being the number of rows in a tile and nl being the number
of columns (i.e. size of rows) in the sub-part of the global matrix stored in the
hdf5 file D.l. Because the splitting of the global matrix into several hdf5 files
does not match the splitting into tiles, we have to read small pieces of data into
the neighbouring file (storing the next data in the line of the global matrix) to
extend the panel so that it is constituted of complete tiles. This is done so as
to simplify the transformation of panels into tiles in the subsequent step.

The third drawback being that the hdf5 performance is reduced when multiple
MPI processes access the same file, the algorithm reads large blocks of rows
following a simple 1D block-non-cyclic distribution, i.e. splitting the set of hdf5
files as blocks of rows allocated in a balanced way over MPI processes (see Figure
4). This way, there are far fewer calls to the hdf5 h5dread read routine, done on
much larger data blocks, accessed on a per-row basis following the hdf5 storage,
and with a limited number of MPI processes handling each file. Splitting the
matrix into panels allows one to exhibit pipelining since, once the first panel
is read, the following tasks performing data copies from panel to tile can be
scheduled directly without waiting for the whole matrix to be read.
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Figure 4: Reading the distance matrix from 6 files with the hdf5-tailored method
using 3 MPI processes.

Now that we have optimized the way we read data from hdf5 files, it remains to
set up the tile matrix distributed in a 1D block-cyclic fashion. This is done by
first building a tile matrix, following the same 1D block-no-cyclic distribution
used for reading, using the chameleon map function to copy the panels into tiles
(step "Copy Panels to Tiles" in Figure 4). The ultimate step consists in per-
forming a tile shuffle by transferring the tiles to the appropriate MPI process
in order to obtain the target block-cyclic distribution (step "Tiles migration to
block-cyclic" in 4). The whole algorithm is task-based and without synchro-
nization between the tasks that read panels, the ones that copy panels into tiles
and those migrating tiles. As a consequence, it is not necessary to fully host the
matrix twice in main memory, the buffer for reading a panel being a temporary
workspace whose maximum size is under prescribed control.
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3.6 A software stack crafted with care

Beyond the above discussed careful task-based numerical and I/O design, the
software stack has been further tuned to deliver high performance and maintain
memory usage under control. In section 2.3, we summarized how task-based
runtime systems can cope with a very dynamic availability of tasks. This allows
us to fully pipeline all the steps of the RSVD and of the RSVD-MDS, including
the overlapping of the I/O with computation. The general-purpose heuristics of
the starpu runtime [46] also already cope well with the RSVD and RSVD-MDS
task graphs. We have however tuned two parameters.

First, the application does not need to expose the whole task graph to the
starpu runtime, it only needs to expose enough tasks for enough parallelism to
be available to exploit all the processing units of the target system. On the
contrary actually, we had to limit the task graph exposure to the starpu run-
time, to avoid overflowing the memory of the target system with temporary
buffers. We thus used task submission throttling [68] to control how much of
the task graph is exposed to the runtime. The STARPU_LIMIT_MAX_SUBMITTED_TASKS
environment variable allows to specify the maximum number of tasks submitted
to the runtime. Beyond this value, the task submission function blocks. The
STARPU_LIMIT_MIN_SUBMITTED_TASKS environment variable allows to specify the min-
imum number of tasks submitted to the runtime. Below this value, the task
submission function unblocks. The application thus alternates between submit-
ting a series of tasks and blocking, waiting for some tasks to complete before
submitting more tasks. With a large-enough STARPU_LIMIT_MIN_SUBMITTED_TASKS
value, the system does not run out of parallelism, and with a small-enough
STARPU_LIMIT_MAX_SUBMITTED_TASKS value, the system does not overflow its memory.
In the MDS case, we configured the values according to the parallelism induced
by the SUMMA algorithm.

Second, we tuned the usage of cores on the system. When using an MPI library
for inter-node communications, starpu automatically reserves a whole CPU core
for the MPI communications. It is known [69] that communication only makes
progress when MPI functions are called, thus dedicating a whole thread to this
purpose ensures that MPI communications complete asynchronously. In the
newmadeleine case however, starpu does not dedicate a thread for communications
but instead leaves a core empty so that newmadeleine may use it for its progression
engine [70]. The mere submission of tasks by itself takes a significant amount
of CPU time. We have thus reserved another CPU core to this end, with the
STARPU_RESERVE_NCPU environment variable. Eventually, we made sure that the
Intel MKL library does not introduce spurious core binding, so that the starpu
runtime can properly control how CPU cores are used.

4 Experimental study

We now present an experimental study on the behaviour of the proposed task-
based RSVD and RSVD-MDS. We first present the numerical set up that mo-
tivated this work in section 4.1 as well as the hardware and software set up
in section 4.2. We then assess the capability of our algorithms and software
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stack to process the target problem (Lall test case, m = 1, 043, 192, k = 1, 000).
We then present a performance study. Section 4.4 first assesses the I/O strate-
gies proposed in section 3.5, motivating to rely on the most advanced scheme
(hdf5-tailored). We then present an overall performance study of the RSVD
and RSVD-MDS (with the hdf5-tailored scheme for the I/Os) in section 4.5.
Section 4.6 and section 4.7 eventually show the versatility of the designed soft-
ware stack to take advantage of heterogeneous machines and employ various
communication back-ends (MPI and newmadeleine), respectively, illustrating the
strength of the task-based programming model in abstracting the architecture
and the execution model while ensuring performance portability.

4.1 Numerical set up

In the following, the MDS is performed on matrices storing the genetic distances
of Diatoms collected in Geneva. The structure of the distance array between
sequences in an environmental sample reflects its diversity. Here, we have tried
to decipher the diversity of ten related environmental samples by associating to
them a point cloud in a low dimensional Euclidean space with MDS, where each
point is a sequence, and the distance between two points is as close as possible
to the genetic distance between the sequences. The dataset used as input for the
MDS is a 106 × 106 matrix of distances between sequences, provided by Inrae
BioGeCo, split into 55 smaller blocks. It comes from 10 environmental samples,
denoted by Lt for t ∈ {1, . . . , 10}, which have been collected in Geneva lake by
UMR Carrtel at Inrae Thonon, at about monthly intervals at times t = 1, . . . , 10
between April 2012 and March 2013. Their objective was to investigate seasonal
dynamics. All pairwise distance matrices Dtt′ for 1 ≤ t < t′ ≤ 10 have been
computed (45 matrices, available in hdf5 format). The sizes of diagonal blocks
vary between 7.0 × 104 and 1.4 × 105 rows. Diagonal blocks are square, and
Dtt[i, j] in diagonal block t is the distance between read i and j in sample Lt.
In off-diagonal blocks (t, t′), Dtt′ [i, j] is the distance between read i in Lt and
read j in Lt′ . The total number of reads (hence the order of the assembled
matrix) exceeds one million. The molecular biology protocol for extracting
DNA, amplifying marker rbcL, sequencing, is presented in [16, 71] and has
been implemented by Inrae UMR Carrtel at Thonon and PGTB Platform at
Bordeaux, providing over one million reads in total. Distances between the
reads have been then computed with Smith-Waterman algorithm [72, 73] as
part of e-biothon project [74], which provided a use of massive parallelization
for biodiversity studies. Pairwise distances have been computed with C/MPI
program MPI-disseq from BioGeCo. These pre-calculated resulting distances
constitute the input distance matrix for the present study (input matrix D in
Algorithm 1). We may consider either part of the data (leading to a matrix of
reduced dimension) of the whole data set (Lall). Table 1 shows the different
samples we have considered and the associated matrix orders (m). While the
software stack works both in single (32 bits) or double (64 bits) precision, all
the tests we report on here are conducted in single precision, as it is enough in
practice to obtain results of wished quality (which is confirmed in section 4.3).
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Table 1: Samples considered in the study and associated distance matrix order
m. For instance, Leven distance matrix of order 616, 644 consists of the assembly
of samples L2, L4, L6, L8 and L10 (hence 15 files, 5 for diagonal blocks and 10
for off-diagonal ones).

Name m
L6 99,594

L2L3L6 270,983
L1L3L5L7L9 (Lodd) 426,548
L2L4L6L8L10 (Leven) 616,644

L1L2L3L4L5L6L7L8L9L10 (Lall) 1,043,192

4.2 Hardware and software set up

Three hardware configurations have been considered for the experiments. One
homogeneous machine with a partition made of Intel Haswell nodes with 128
GB of RAM used for section 4.4 and section 4.5. For the experiments with
newmadeleine, see section 4.7, the Haswell partition had been dismantled in be-
tween, hence we used another partition of the same machine, with Intel Broad-
well nodes with 64 GB of RAM. For the tests with GPUs, see section 4.6, we
have used an heterogeneous machine, with Intel Cascade Lake nodes associated
with Nvidia Tesla V100 GPUs.

4.2.1 HSW24 and BDW28 homogeneous partitions

The first system considered is the Occigen homogeneous supercomputer, a Bull
B720 machine on a partition composed of 2,106 Haswell E5-2690V3@2.6 GHz
(24 cores per node) CPU nodes, equipped with 128 GB of RAM per node,
an Infiniband FDR interconnect (56 Gb/s), and a Lustre file system with 5
PB of usable space and a maximum bandwidth that exceeds 105 GB/s. This
partition will be referred to as HSW24 and used for the numerical assessment
in section 4.3, the study of the I/O strategies in section 4.4, and the overall
RSVD-MDS evaluation in section 4.5. We also consider another partition of the
same machine, composed of Broadwell E5-2690 V4@2.6GHz (28 cores per node)
CPU nodes, equipped with 64 GB of RAM per node (and the same network
and file system). This partition will be referred to as BDW28 and employed
for the prospective study of communication back-ends in section 4.7.

4.2.2 CAS40+V100x4 heterogeneous machine

The Jean Zay supercomputer is considered for assessing the software stack in
the heterogeneous case. It is a HPE SGI 8600 machine composed of 261 nodes,
each having two Intel Cascade Lake 6248 (20 cores at 2.5 GHz per processor)
CPUs (i.e. 40 cores per node) with 192 GB of memory and enhanced with four
Nvidia Tesla V100 SXM2 GPUs (32 GB). The network is an Omni-Path 100
Gb/s interconnect and the I/Os rely on an IBM Spectrum Scale parallel file
system (ex-GPFS). This machine will be referred to as CAS40+V100x4 and
employed in section 4.6.
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4.2.3 Software

We use the latest stable versions of the software stack with the mds and fmr mas-
ter branches at commit b724117e and 5a3fa5c3 respectively, chameleon v1.1.0,
starpu v1.3.8, hdf5 v1.12.1, OpenMPI v4.1.1, newmadeleine branch master

at commit 615a8334, UCX v1.11.0, Hwloc v2.4.1, Intel MKL v2019.5.281 on
the homogeneous HSW24 and BDW28 partitions and v2019.4.243 on the het-
erogeneous CAS40+V100x4 machine. CUDA/cuBLAS v10.1.2 were used on
CAS40+V100x4.

4.3 Numerical assessment

The first result is the capability of the proposed task-based design and software
stack to process the target problem (Lall test case, m = 1, 043, 192, k = 1, 000).
The execution completed, being able to produce X (and write it to disk. We
could also assess that the RSVD was successful through the CHECK step (line
3 in Algorithm 1) with ε = 10−3, obtaining τ = ‖Σ‖F

‖G‖F = 0.99994 > τmin =

1.0−10−3. Additional checks were performed and were all successful (we do not
further report on them but, for instance, on the same target test case with k =
10, 000, we did successfully capture more information, obtaining τ = 0.99999).
As discussed in 2.1.1, another potential error to be assessed is the impact of
the non-symmetric randomization process we have employed, which breaks the
assumption that left (U) and right (V ) singular vectors are equal (U = V )
in the G = UΣV T SVD decomposition, as it does not ensure anymore that
the SVD and the EVD of the QQTA approximation coincide up to the sign
of the eigenvalues. We therefore check how U+Σ+U+t = XXt departs from
U+Σ+V +t. For that, we assessed ‖U

+Σ+V +t−XXT ‖F
m‖U+Σ+V +t‖F and we observed that it

was systematically lower than 2 × 10−7. The third validation we ensured is
the visualization of the computed point cloud X, in which case we have to
restrict to a 2D representation (kMDS = 2). Figure 5 shows the point cloud
associated to the Lall test case after conserving the dimensions associated with
the 2 dominant singular values (kMDS = 2, after a processing of the RSVD-
MDS at rank k = 1, 000). We obtained k+ = 583 for the Lall dataset and a
further analysis of the outcome of the MDS for kMDS ∈ [2, k+ = 583] is thus
now possible but out of the scope of the present study and we reserve it for
future work.

4.4 Performance analysis of the I/Os

We now assess the performance of the set up of the input distance matrix D
in memory from the hdf5 files ( READ_D step of the MDS). Table 2 shows the
performance of the three I/O strategies proposed in section 3.5 on the homoge-
neous machine HSW24 with tiles of size nb = 320. The by-tile + single-worker
method ensures a performance gain between 15% and 50% compared to the
baseline by-tile method where all workers perform I/O requests. It is is even
the optimum method (358 s) in the single node case (assessed on L6). However
none of these strategies scale in a distributed memory context. On the contrary,
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Figure 5: Lall test case (m = 1, 043, 192, k = 1, 000) point cloud (first two axis).
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Figure 6: Execution time (s) of the overall RSVD-MDS (left) and focus on the
RSVD (right) on the homogeneous machine HSW24, nb = 320, k = 1, 000. Five
test cases assessed, ranging from L6 on 1 node to the Lall on 100 nodes.

the hdf5-tailored strategy, which accesses the data as they are stored on disk (by
row) and (as much as possible) tackles different files with different processes,
ensures a much better scaling. For instance, on the target test case (Lall) on
100 nodes, the hdf5-tailored improves by a factor 7.2 and 8.3 over the by-tile
and by-tile + single-worker strategies, respectively.

Table 2: Time (in s) of the READ_D step (homogeneous machine HSW24, nb =
320).
Test case order m #nodes by-tile by-tile + single-worker hdf5-tailored
L6 99,594 1 640 358 403
L2L3L6 270,983 6 1,297 973 399
Lodd 426,548 16 2,029 1,482 364
Leven 616,644 32 2,938 2,452 435
Lall 1,043,192 100 4,128 3,595 497

4.5 Overall performance analysis of the RSVD-MDS on
an homogeneous machine

Figure 6 shows the overall performance of the RSVD-MDS (left), including I/O
steps, and of the RSVD (right) in particular, for problems of increasing sizes (m)
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Figure 7: Execution time (s) of the RSVD on the heterogeneous machine
CAS40+V100×4 with GPU accelerators turned off (left) or on (right), nb =
1, 000, k = 1, 000. First three test cases assessed, ranging from L6 on 1 node to
the Lodd on 16 nodes.

associated with the test cases from Table 1 (from L1 to Lall), on an increasing
number of processes (ranging from 1 to 100), employing an RSVD of fixed
prescribed rank k = 1, 000. We remind, as discussed in section 3.3, that the
computational complexity of both the RSVD-MDS and RSVD is proportional
to m2, the number of coefficients of the input distance matrix D. These results
may thus be viewed as a weak scaling study: when the matrix order m is 10
times larger, the number of resources (nodes) being roughly 100 times larger.
The main observation is that the overall RSVD-MDS scales fairly well, the
overall execution time increasing by factor 2 only on a 100 hundred times more
complex problem. This is the case both for the I/O steps (following the hdf5-
tailored strategy) and the numerical steps, dominated by the RSVD. Finally,
we are able to solve a one million problem in less than 900 seconds.

Focusing on the RSVD (Figure 6, right), we furthermore observe, as expected
from the discussion of section 3.3, that the dominant steps are effectively the
GE1 and GE2 matrix multiplication steps (roughly 100 seconds). Their scalable
design (section 3.4) ensures the scalability of the whole RSVD. In addition we
may observe that, thanks to their advanced design (see section 3.1), the QR
factorizations ( QR1 and QR2) and associated construction of Q ( Q1 and Q2) do
manage to parallelize well enough so that their impact on the RSVD remains
negligible at scale (roughly 1 second), in spite of the challenging pattern of the
tall and skinny matrices they are applied on. Finally, we remind that the use of
a QR-SVD algorithm for processing the internal deterministic SVD step of the
RSVD was motivated by the wish of ensuring a separation of concern, relying on
a fast m× k distributed-memory QR factorization and relying on a centralized
small k × k standard SVD expecting that it is small enough not to prevent the
algorithm to scale (see section 2.1.3). The results do confirm this wish: as just
discussed, QR2 and Q2 scale well enough to remain a small proportion of the
overall time, and, the use of a k × k SVD (less than 1 second) does not penalize
the overall execution time.
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Figure 8: Execution time (s) of the RSVD with OpenMPI (left) and New-
Madeleine (right), homogeneous partition BDW28, nb = 320, k = 1, 000. Ma-
trices of order 64,000 to 704,000 on 1 to 96 nodes, respectively (weak scaling).

4.6 Performance analysis of the RSVD on an heteroge-
neous machine

One of the strength of task-based programming is that by allowing for an ab-
straction of the architecture, the paradigm allows for a portable design. In
particular, the software stack could be successfully executed on an heteroge-
neous machine without changing the code. We have performed the MDS for
the first three test cases of Table 1 (from L1 to Lodd) on the CAS40+V100x4
machine. We however report on the performance of the RSVD (Figure 7) only
as I/Os, which dominate the rest of the RSVD-MDS execution time, are or-
thogonal to the potential use of GPU accelerators. The results show that we do
successfully benefit from the GPU usage to speed-up the overall performance of
the RSVD (16 seconds instead of 27 without GPUs on Lodd), in particular due
to the improved performance of the dominant matrix multiplication steps GE1
and GE2 (6 seconds instead of 11 without GPUs on Lodd).

4.7 Study of the impact of the communication back-end
on the performance of the RSVD

We now illustrate an other interesting feature of task-based programming in
terms of versatility. Because the numerical algorithm is encoded at a high-level
of abstraction as a DAG of tasks, the runtime has the freedom to employ various
communication engines without requiring to change anything in the numerical
code. As a result, our software stack can be executed either with an MPI
back-end (with the possibility to rely on a library extremely well tested such
as OpenMPI or any other MPI implementation), or, with a more original back-
end, such as the research-oriented newmadeleine project discussed in section 2.3.
As the communication layer is orthogonal to the I/O one, we again focus on
the RSVD only. Figure 8 shows that the newmadeleine back-end delivers a more
sustainable weak scaling (with about 35% of improvement on the GEMM and
QR steps). Though a detailed analysis is out of the scope of this paper (we
refer to appendix C), this result illustrates that by coupling the task-based
runtime with a light-weight communication back-end, performance gains can be
obtained, while not requiring to change anything in the numerical part (here,
the top three layers) of the software stack.

RR n° 9482

http://pm2.gitlabpages.inria.fr/newmadeleine/
http://pm2.gitlabpages.inria.fr/newmadeleine/


28 Agullo & Coulaud & Denis et al.

5 Conclusion

The main contribution of this article is the design of a task-based RSVD and
RSVD-MDS. The RSVD has been implemented within fmr on top of the task-
based chameleon existing p?plrnt ( RAND) ( plasma-inherited) tile random gener-
ator, p?geqrf ( QR1, QR2) QR factorization, p?orgqr orthogonal generation ( Q1,
Q2) and of the new p?gemm SUMMA general matrix multiplication ( GE1, GE2,
GE3, GE4). The usage of a QR-SVD for processing the internal deterministic
SVD allowed us to simply rely on a centralized SVD kernel (k× k SVD) without
a prohibitive performance overhead. The RSVD-MDS has been implemented
within the mds application on top of this RSVD and of new task-based numer-
ical ( GRAM, COMPUTE_X) and I/O ( READ_D, WRITE_X) algorithms (the CHECK step
being essentially designed on top of the existing task-based norm computation).
The result is a fully pipelined RSVD and RSVD-MDS for (homogeneous and
heterogeneous) modern supercomputers. The RSVD-MDS method being a fast
SVD-MDS, the outcome is the unique (to the best of our knowledge) capability
of processing large distance matrices with a robust MDS. We were able to pro-
cess with success a distance matrix D of order m = 1, 043, 192, using a random
projection of rank k = 1, 000, which are dimensions of great practical interest
for the metabarcoding community, and, so far, out-of-reach (to the best of our
knowledge) with a robust numerical MDS.

This work also pioneers – to the best of our knowledge – for illustrating the
potential of the STF programming model for carefully and completely pipelining
an application with as many steps in a distributed-memory framework. We hope
that it will attract the attention of the high performance, scientific computing
community for further considering task-based programming in general and the
STF model in particular.

The dimensions of the RSVD and RSVD-MDS make them mostly driven by
the performance of the matrix multiplication. We have thus designed a state-
of-the-art distributed-memory SUMMA matrix multiplication to ensure their
scalability. However, the proposed design has been by means of relatively low-
level techniques, consisting in forcing communication patterns by expressing
copies in the task flow. As a consequence, the elegance of the STF model is
slightly reduced and the code looses part of its versatility. In particular, only a
C-stationary variant has been implemented while a A-stationary variant should
further improve the performance in the 2D case. We plan to rely on a more
versatile matrix multiplication based on an extension of the STF programming
model to express scalable communication patterns in a high-level expression
[75] (which takes further advantage of newmadeleine capabilities). In addition,
we plan to tackle the issue of exploiting symmetry in the matrix multiplication
while maintaining an arithmetic intensity as high as in the non symmetric case.

The MDS is one method among others of linear dimension reduction [21, 76].
All of them rely on a best low-rank approximation of a given matrix, which
can be achieved by SVD. The other operations are pre-processing (such as
column-wise centering and scaling in Principal Component Analysis, which has
roughly speaking the same complexity as computing the Gram matrix), and
post-processing (such as the computation of coordinates, often a matrix-matrix
product). The top layer of the software stack presented in Figure 1 could be
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enriched beyond MDS by the family of linear dimension reduction methods for
which it is relevant. This is an on-going project named diodon.
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A Slightly more details on the complexity of RSVD

We here present more details on the complexity of the main algorithmic steps
of the RSVD, as a complement to section 3.3.

We note f(m, k) ∼m→∞ g(m, k) when limm→∞
f(m,k)
g(m,k) = 1, and f(m,n, k) ∼m,n→∞

g(m,n, k) when limm,n→∞
f(m,n,k)
g(m,n,k) = 1 and assume standard matrix multipli-

cations and Householder QR factorizations. Here is the asymptotic flop com-
plexity of the computational steps from the RSVD (Algorithm 2) for dimen-
sions m ≥ n � k: GE1 (m,n, k) ∼m,n→∞ 2mnk, QR1 (m, k) ∼m→∞ 2mk2,
Q1 (m, k) ∼m→∞ 2mk2, GE2 (m,n, k) ∼m,n→∞ 2mnk, QR-SVD (n, k) ∼n→∞

4nk2, GE3 (m, k) ∼m→∞ 2mk2. Note that, in details, the QR-SVD (Algorithm
3) consists of QR2 (n, k) ∼n→∞ 2nk2, Q2 (n, k) ∼n→∞ 2nk2, k×k SVD (k) =
O(1) as m,n → ∞, GE4 (n, k) ∼n→∞ 2nk2. All in all, the flop count of the
RSVD (Algorithm 2) is therefore dominated by GE1 and GE2 matrix multipli-
cations and satisfies RSVD (m,n, k) ∼m,n→∞ 4mnk. In particular, we have
RSVD (m,n, k) = O(mn) as m,n→∞. The RSVD step (called with m = n)
dominating the RSVD-MDS (Algorithm 1), the flop count of the latter satisfies
RSVD-MDS (m, k) = O(m2) as m→∞.

B I/Os: task-based management of the write op-
erations ( WRITE_X)

The mds application eventually aims at writing the resulting point cloud XkMDS

on disk in an HDF5 file. The size of XkMDS is much smaller than D because
the number of columns kMDS is at least one hundred times smaller than m in
our context. Still, this object is distributed in order to avoid memory imbalance
and such that we can study MDS with an RSVD parameterized by any value
of the prescribed rank k (including for k > 1, 000). We therefore also save
XkMDS in a distributed way. Note that, similarly to the read case, we avoid
concurrent writing of all the tiles for a performance concern. We therefore
convert the tile matrix into large blocks of rows distributed over MPI processes
(1d decomposition over rows) and then perform a parallel HDF5 call to write the
blocks (see Figure 9). The conversion of tiles to large blocks is handled thanks
to a task-based algorithm relying on the map function. Figure 6 discussed in
section 4.5 showed the resulting performance of this WRITE_X operation. For
instance, for the largest matrix (Lall) of the collection, and with k = 1, 000, we
save to disk kMDS = k+ = 583 columns (we remind that kMDS ∈ [2, k+ = 583]).
The corresponding elapsed for the whole process (conversion into large blocks
and HDF5 writing) is then of 11 seconds.
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Figure 9: Copy tiles of the X matrix into large blocks with 3 MPI processes,
then call parallel MPI HDF5 write.
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Figure 10: RSVD (left) and GEQRF (right) CPU times the homogeneous ma-
chine BDW28 with OpenMPI and nmad, weak scaling, nb = 320, k = 1, 000.

C Slightly more details on the impact of the com-
munication back-end on the performance of
the RSVD

We provide the execution time of the RSVD and GEQRF operations in a weak
scaling set up on the homogeneous machine BDW28 with both OpenMPI and
newmadeleine back-ends in Figure 10.
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