18 research outputs found

    Baseline risk factors of in-hospital mortality after surgery for acute type A aortic dissection: an ERTAAD study

    Get PDF
    Background Surgery for type A aortic dissection (TAAD) is associated with high risk of mortality. Current risk scoring methods have a limited predictive accuracy.Methods Subjects were patients who underwent surgery for acute TAAD at 18 European centers of cardiac surgery from the European Registry of Type A Aortic Dissection (ERTAAD).Results Out of 3,902 patients included in the ERTAAD, 2,477 fulfilled the inclusion criteria. In the validation dataset (2,229 patients), the rate of in-hospital mortality was 18.4%. The rate of composite outcome (in-hospital death, stroke/global ischemia, dialysis, and/or acute heart failure) was 41.2%, and 10-year mortality rate was 47.0%. Logistic regression identified the following patient-related variables associated with an increased risk of in-hospital mortality [area under the curve (AUC), 0.755, 95% confidence interval (CI), 0.729-0.780; Brier score 0.128]: age; estimated glomerular filtration rate; arterial lactate; iatrogenic dissection; left ventricular ejection fraction <= 50%; invasive mechanical ventilation; cardiopulmonary resuscitation immediately before surgery; and cerebral, mesenteric, and peripheral malperfusion. The estimated risk score was associated with an increased risk of composite outcome (AUC, 0.689, 95% CI, 0.667-0.711) and of late mortality [hazard ratio (HR), 1.035, 95% CI, 1.031-1.038; Harrell's C 0.702; Somer's D 0.403]. In the validation dataset (248 patients), the in-hospital mortality rate was 16.1%, the composite outcome rate was 41.5%, and the 10-year mortality rate was 49.1%. The estimated risk score was predictive of in-hospital mortality (AUC, 0.703, 95% CI, 0.613-0.793; Brier score 0.121; slope 0.905) and of composite outcome (AUC, 0.682, 95% CI, 0.614-0.749). The estimated risk score was predictive of late mortality (HR, 1.035, 95% CI, 1.031-1.038; Harrell's C 0.702; Somer's D 0.403), also when hospital deaths were excluded from the analysis (HR, 1.024, 95% CI, 1.018-1.031; Harrell's C 0.630; Somer's D 0.261).Conclusions The present analysis identified several baseline clinical risk factors, along with preoperative estimated glomerular filtration rate and arterial lactate, which are predictive of in-hospital mortality and major postoperative adverse events after surgical repair of acute TAAD. These risk factors may be valuable components for risk adjustment in the evaluation of surgical and anesthesiological strategies aiming to improve the results of surgery for TAAD.Clinical Trial Registration https://clinicaltrials.gov, identifier NCT04831073

    Outcome after Surgery for Iatrogenic Acute Type A Aortic Dissection

    Get PDF
    (1) Background: Acute Stanford type A aortic dissection (TAAD) may complicate the outcome of cardiovascular procedures. Data on the outcome after surgery for iatrogenic acute TAAD is scarce. (2) Methods: The European Registry of Type A Aortic Dissection (ERTAAD) is a multicenter, retrospective study including patients who underwent surgery for acute TAAD at 18 hospitals from eight European countries. The primary outcomes were in-hospital mortality and 5-year mortality. Twenty-seven secondary outcomes were evaluated. (3) Results: Out of 3902 consecutive patients who underwent surgery for acute TAAD, 103 (2.6%) had iatrogenic TAAD. Cardiac surgery (37.8%) and percutaneous coronary intervention (36.9%) were the most frequent causes leading to iatrogenic TAAD, followed by diagnostic coronary angiography (13.6%), transcatheter aortic valve replacement (10.7%) and peripheral endovascular procedure (1.0%). In hospital mortality was 20.5% after cardiac surgery, 31.6% after percutaneous coronary intervention, 42.9% after diagnostic coronary angiography, 45.5% after transcatheter aortic valve replacement and nihil after peripheral endovascular procedure (p = 0.092), with similar 5-year mortality between different subgroups of iatrogenic TAAD (p = 0.710). Among 102 propensity score matched pairs, in-hospital mortality was significantly higher among patients with iatrogenic TAAD (30.4% vs. 15.7%, p = 0.013) compared to those with spontaneous TAAD. This finding was likely related to higher risk of postoperative heart failure (35.3% vs. 10.8%, p < 0.0001) among iatrogenic TAAD patients. Five-year mortality was comparable between patients with iatrogenic and spontaneous TAAD (46.2% vs. 39.4%, p = 0.163). (4) Conclusions: Iatrogenic origin of acute TAAD is quite uncommon but carries a significantly increased risk of in-hospital mortality compared to spontaneous TAAD

    Oxigenación con membrana extracorpórea en el paciente COVID-19: resultados del Registro Español ECMO-COVID de la Sociedad Española de Cirugía Cardiovascular y Endovascular (SECCE)

    Full text link
    Background and aim: COVID-19 patients with severe heart or respiratory failure are potential candidates for extracorporeal membrane oxygenation (ECMO). Indications and management of these patients are unclear. Our aim is to describe the results of a prospective registry of COVID-19 patients treated with ECMO. Methods: An anonymous prospective registry of COVID-19 patients treated with veno-arterial (V-A) or veno-venous (V-V) ECMO was created on march 2020. Clinical, analytical and respiratory preimplantation variables, implantation data and post-implantation course data were recorded. The primary endpoint was all cause in-hospital mortality. Secondary events were functional recovery and the combined endpoint of mortality and functional recovery in patients followed at least 3 months after discharge. Results: Three hundred and sixty-six patients from 25 hospitals were analyzed, 347 V-V ECMO and 18 V-A ECMO patients (mean age 52.7 and 49.5 years respectively). Patients with V-V ECMO were more obese, had less frequently organ damage other than respiratory failure and needed less inotropic support; Thirty three percent of V-A ECMO and 34.9% of V-A ECMO were discharged (P = NS). Hospital mortality was non-significantly different, 56.2% versus 50.9% respectively, mainly during ECMO therapy and mostly due to multiorgan failure. Other 51 patients (14%) remained admitted. Mean follow-up was 196 +/- 101.7 days (95%CI: 170.8-221.6). After logistic regression, body weight (OR 0.967, 95%CI: 0.95-0.99, P = 0.004) and ECMO implantation in the own centre (OR 0.48, 95%CI: 0.27-0.88, P = 0.018) were protective for hospital mortality. Age (OR 1.063, 95%CI: 1.005-1.12, P = 0.032), arterial hypertension (3.593, 95%CI: 1.06-12.19, P = 0.04) and global (2.44, 95%CI: 0.27-0.88, P = 0.019), digestive (OR 4,23, 95%CI: 1.27-14.07, P = 0.019) and neurological (OR 4.66, 95%CI: 1.39-15.62, P = 0.013) complications during ECMO therapy were independent predictors of primary endpoint occurrence. Only the post-discharge day at follow-up was independent predictor of both secondary endpoints occurrence. Conclusions: Hospital survival of severely ill COVID-19 patients treated with ECMO is near 50%. Age, arterial hypertension and ECMO complications are predictors of hospital mortality, and body weight and implantation in the own centre are protective. Functional recovery is only predicted by the follow-up time after discharge. A more homogeneous management of these patients is warranted for clinical results and future research optimization. (C) 2022 Sociedad Espanola de Cirugia Cardiovascular y Endovascular. Published by Elsevier Espana, S.L.U

    COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby.

    Get PDF
    BACKGROUND: Two common single nucleotide polymorphisms within the COL5A1 gene (SNPs; rs12722 C/T and rs3196378 C/A) have previously been associated with tendon and ligament pathologies. Given the high incidence of tendon and ligament injuries in elite rugby athletes, we hypothesised that both SNPs would be associated with career success. RESULTS: In 1105 participants (RugbyGene project), comprising 460 elite rugby union (RU), 88 elite rugby league athletes and 565 non-athlete controls, DNA was collected and genotyped for the COL5A1 rs12722 and rs3196378 variants using real-time PCR. For rs12722, the injury-protective CC genotype and C allele were more common in all athletes (21% and 47%, respectively) and RU athletes (22% and 48%) than in controls (16% and 41%, P ≤ 0.01). For rs3196378, the CC genotype and C allele were overrepresented in all athletes (23% and 48%) and RU athletes (24% and 49%) compared with controls (16% and 41%, P ≤ 0.02). The CC genotype in particular was overrepresented in the back and centres (24%) compared with controls, with more than twice the odds (OR = 2.25, P = 0.006) of possessing the injury-protective CC genotype. Furthermore, when considering both SNPs simultaneously, the CC-CC SNP-SNP combination and C-C inferred allele combination were higher in all the athlete groups (≥18% and ≥43%) compared with controls (13% and 40%; P = 0.01). However, no genotype differences were identified for either SNP when RU playing positions were compared directly with each other. CONCLUSION: It appears that the C alleles, CC genotypes and resulting combinations of both rs12722 and rs3196378 are beneficial for rugby athletes to achieve elite status and carriage of these variants may impart an inherited resistance against soft tissue injury, despite exposure to the high-risk environment of elite rugby. These data have implications for the management of inter-individual differences in injury risk amongst elite athletes

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Outcome after Surgery for Iatrogenic Acute Type A Aortic Dissection

    Get PDF
    (1) Background: Acute Stanford type A aortic dissection (TAAD) may complicate the outcome of cardiovascular procedures. Data on the outcome after surgery for iatrogenic acute TAAD is scarce. (2) Methods: The European Registry of Type A Aortic Dissection (ERTAAD) is a multicenter, retrospective study including patients who underwent surgery for acute TAAD at 18 hospitals from eight European countries. The primary outcomes were in-hospital mortality and 5-year mortality. Twenty-seven secondary outcomes were evaluated. (3) Results: Out of 3902 consecutive patients who underwent surgery for acute TAAD, 103 (2.6%) had iatrogenic TAAD. Cardiac surgery (37.8%) and percutaneous coronary intervention (36.9%) were the most frequent causes leading to iatrogenic TAAD, followed by diagnostic coronary angiography (13.6%), transcatheter aortic valve replacement (10.7%) and peripheral endovascular procedure (1.0%). In hospital mortality was 20.5% after cardiac surgery, 31.6% after percutaneous coronary intervention, 42.9% after diagnostic coronary angiography, 45.5% after transcatheter aortic valve replacement and nihil after peripheral endovascular procedure (p = 0.092), with similar 5-year mortality between different subgroups of iatrogenic TAAD (p = 0.710). Among 102 propensity score matched pairs, in-hospital mortality was significantly higher among patients with iatrogenic TAAD (30.4% vs. 15.7%, p = 0.013) compared to those with spontaneous TAAD. This finding was likely related to higher risk of postoperative heart failure (35.3% vs. 10.8%, p &lt; 0.0001) among iatrogenic TAAD patients. Five-year mortality was comparable between patients with iatrogenic and spontaneous TAAD (46.2% vs. 39.4%, p = 0.163). (4) Conclusions: Iatrogenic origin of acute TAAD is quite uncommon but carries a significantly increased risk of in-hospital mortality compared to spontaneous TAAD

    Direct Aortic Versus Supra-Aortic Arterial Cannulation During Surgery for Acute Type A Aortic Dissection

    No full text
    Aims: In this study we evaluated the impact of direct aortic cannulation versus innominate/subclavian/axillary artery cannulation on the outcome after surgery for type A aortic dissection. Methods: The outcomes of patients included in a multicenter European registry (ERTAAD) who underwent surgery for acute type A aortic dissection with direct aortic cannulation versus those with innominate/subclavian/axillary artery cannulation, i.e. supra-aortic arterial cannulation, were compared using propensity score matched analysis. Results: Out of 3902 consecutive patients included in the registry, 2478 (63.5%) patients were eligible for this analysis. Direct aortic cannulation was performed in 627 (25.3%) patients, while supra-aortic arterial cannulation in 1851 (74.7%) patients. Propensity score matching yielded 614 pairs of patients. Among them, patients who underwent surgery for TAAD with direct aortic cannulation had significantly decreased in-hospital mortality (12.7% vs. 18.1%, p = 0.009) compared to those who had supra-aortic arterial cannulation. Furthermore, direct aortic cannulation was associated with decreased postoperative rates of paraparesis/paraplegia (2.0 vs. 6.0%, p &lt; 0.0001), mesenteric ischemia (1.8 vs. 5.1%, p = 0.002), sepsis (7.0 vs. 14.2%, p &lt; 0.0001), heart failure (11.2 vs. 15.2%, p = 0.043), and major lower limb amputation (0 vs. 1.0%, p = 0.031). Direct aortic cannulation showed a trend toward decreased risk of postoperative dialysis (10.1 vs. 13.7%, p = 0.051). Conclusions: This multicenter cohort study showed that direct aortic cannulation compared to supra-aortic arterial cannulation is associated with a significant reduction of the risk of in-hospital mortality after surgery for acute type A aortic dissection. Trial registration: ClinicalTrials.gov Identifier: NCT04831073
    corecore