7 research outputs found
Nanochemical Processes In Solid-Phase Reduction Of Ferrioxide-Silicate Materials
Solid-phase carbon reduction of ferrioxide-silicate materials have been investigated on example of sedimentary
iron ores of Kerch deposit. It was shown that nanochemical iron oxide reduction to sponge iron
with flux-mineralizers is accomplished due to ferric carbide and nanocarbon mostly, which are being
formed out of initial carbon powdered material by carbide mechanism.
Obtained results caused development of iron ore direct reduction method which is much better of
SL/RN method used in industry.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3555
Innovative microelectronic technologies for high-energy physics experiments
In the paper there are proposed new approaches to for creating the innovative design-technological solutions and manufacture technologies of advanced thin pixel array detector modules based on high resolution CMOS monolithic active pixel sensors as well as flexible adhesiveless aluminium-polyimide flexible boards and cables for high-energy physics experiments
Investigation of the compressed baryonic matter at the GSI accelerator complex
The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√sNN = 2-4.9 GeV) is to discover fundamental properties of QCD matter, namely, the equation-of-state at high density as it is expected to occur in the core of neutron stars, effects of chiral symmetry, and the phase structure at large baryon-chemical potentials (μB ≥ 500 MeV).We are focusing here on the contribution of JINR to the CBM experiment: design of the superconducting dipole magnet; manufacture of the straw and micro-strip silicon detectors, participation in the data taking and analysis algorithms and physics program.* Dedicated to the memory of Prof. Yu.V. Zanevsky and Prof. V.D. Peshekhono
Investigation of the compressed baryonic matter at the GSI accelerator complex*
The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√sNN = 2-4.9 GeV) is to discover fundamental properties of QCD matter, namely, the equation-of-state at high density as it is expected to occur in the core of neutron stars, effects of chiral symmetry, and the phase structure at large baryon-chemical potentials (μB ≥ 500 MeV).
We are focusing here on the contribution of JINR to the CBM experiment: design of the superconducting dipole magnet; manufacture of the straw and micro-strip silicon detectors, participation in the data taking and analysis algorithms and physics program
ALICE Technical Design Report on Forward Detectors : FMD, T0 and V0
ALICE PHASE EI SEP ACC S2
ALICE Technical Design Report of the Computing
ALICE, EI PHASE SE
Technical design report for the upgrade of the ALICE inner tracking system
ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 \uce\ubcm thick CMOS pixel sensor with a pixel pitch of about 30\uc3\u9730 \uce\ubcm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance. \uc2\ua9 2014 CERN on behalf of The ALICE Collaboration