76 research outputs found

    Behaviour of the Pleistocene marsupial lion deduced from claw marks in a southwestern Australian cave

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/The marsupial lion, Thylacoleo carnifex, was the largest-ever marsupial carnivore, and is one of the most iconic extinct Australian vertebrates. With a highly-specialised dentition, powerful forelimbs and a robust build, its overall morphology is not approached by any other mammal. However, despite >150 years of attention, fundamental aspects of its biology remain unresolved. Here we analyse an assemblage of claw marks preserved on surfaces in a cave and deduce that they were generated by marsupial lions. The distribution and skewed size range of claw marks within the cave elucidate two key aspects of marsupial lion biology: they were excellent climbers and reared young in caves. Scrutiny of >10,000 co-located Pleistocene bones reveals few if any marsupial lion tooth marks, which dovetails with the morphology-based interpretation of the species as a flesh specialist

    Taxonomic review of the late Cenozoic megapodes (Galliformes: Megapodiidae) of Australia

    Get PDF
    Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.Megapodes are unusual galliform birds that use passive heat sources to incubate their eggs. Evolutionary relationships of extant megapode taxa have become clearer with the advent of molecular analyses, but the systematics of large, extinct forms (Progura gallinacea, Progura naracoortensis) from the late Cenozoic of Australia has been a source of confusion. It was recently suggested that the two species of Progura were synonymous, and that this taxon dwarfed into the extant malleefowl Leipoa ocellata in the Late Pleistocene. Here, we review previously described fossils along with newly discovered material from several localities, and present a substantial taxonomic revision. We show that P. gallinacea and P. naracoortensis are generically distinct, describe two new species of megapode from the Thylacoleo Caves of south-central Australia, and a new genus from Curramulka Quarry in southern Australia. We also show that L. ocellata was contemporaneous with larger species. Our phylogenetic analysis places four extinct taxa in a derived clade with the extant Australo-Papuan brush-turkeys Talegalla fuscirostris, L. ocellata, Alectura lathami and Aepypodius bruijnii. Therefore, diversity of brush-turkeys halved during the Quaternary, matching extinction rates of scrubfowl in the Pacific. Unlike extant brush-turkeys, all the extinct taxa appear to have been burrow-nesters

    Single-grain TT-OSL bleaching characteristics: Insights from modern analogues and OSL dating comparisons

    Get PDF
    Previous assessments of thermally transferred optically stimulated luminescence (TT-OSL) signal resetting in natural sedimentary settings have been based on relatively limited numbers of observations, and have been conducted primarily at the multi-grain scale of equivalent dose (De) analysis. In this study, we undertake a series of single-grain TT-OSL bleaching assessments on nineteen modern and geological dating samples from different sedimentary environments. Daylight bleaching experiments performed over several weeks confirm that single-grain TT-OSL signals are optically reset at relatively slow, and potentially variable, rates. Single-grain TT-OSL residual doses range between 0 and 24 Gy for thirteen modern samples, with >50% of these samples yielding weighted mean De values of 0 Gy at 2σ. Single-grain OSL and TT-OSL dating comparisons performed on well-bleached and heterogeneously bleached late Pleistocene samples from Kangaroo Island, South Australia, yield consistent replicate age estimates. Our results reveal that (i) single-grain TT-OSL residuals can potentially be reduced down to insignificant levels when compared with the natural dose range of interest for most TT-OSL dating applications; (ii) the slow bleaching properties of TT-OSL signals may not necessarily limit their dating applicability to certain depositional environments; and (iii) non-trivial differences may be observed between single-grain and multi-grain TT-OSL bleaching residuals in some modern samples. Collectively, these findings suggest that single-grain TT-OSL dating may offer advantages over multi-grain TT-OSL dating in certain complex depositional environments

    A comprehensive database of quality-rated fossil ages for Sahul\u27s Quaternary vertebrates

    Get PDF
    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery

    What caused extinction of the pleistocene megafauna of sahul?

    Get PDF
    2016 The Author(s) Published by the Royal Society. All rights reserved. During the Pleistocene, Australia and New Guinea supported a rich assemblage of large vertebrates. Why these animals disappeared has been debated for more than a century and remains controversial. Previous synthetic reviews of this problem have typically focused heavily on particular types of evidence, such as the dating of extinction and human arrival, and have frequently ignored uncertainties and biases that can lead to misinterpretation of this evidence. Here, we review diverse evidence bearing on this issue and conclude that, although many knowledge gaps remain, multiple independent lines of evidence point to direct human impact as the most likely cause of extinction

    Thorough assessment of DNA preservation from fossil bone and sediments excavated from a late Pleistocenee-Holocene cave deposit on Kangaroo Island, South Australia

    Get PDF
    Fossils and sediments preserved in caves are an excellent source of information for investigating impacts of past environmental changes on biodiversity. Until recently studies have relied on morphology-based palaeontological approaches, but recent advances in molecular analytical methods offer excellent potential for extracting a greater array of biological information from these sites. This study presents a thorough assessment of DNA preservation from late Pleistocene-Holocene vertebrate fossils and sediments from Kelly Hill Cave Kangaroo Island, South Australia. Using a combination of extraction techniques and sequencing technologies, ancient DNA was characterised from over 70 bones and 20 sediment samples from 15 stratigraphic layers ranging in age from >20 ka to ~6.8 ka. A combination of primers targeting marsupial and placental mammals, reptiles and two universal plant primers were used to reveal genetic biodiversity for comparison with the mainland and with the morphological fossil record for Kelly Hill Cave. We demonstrate that Kelly Hill Cave has excellent long-term DNA preservation, back to at least 20 ka. This contrasts with the majority of Australian cave sites thus far explored for ancient DNA preservation, and highlights the great promise Kangaroo Island caves hold for yielding the hitherto-elusive DNA of extinct Australian Pleistocene species

    Mid-Pleistocene vertebrate records: Australia

    No full text
    London, U

    Systematics and evolution of the sthenurine kangaroo

    No full text
    Berkele

    FIGURE 21 in A review of the late Cenozoic genus Bohra (Diprotodontia: Macropodidae) and the evolution of tree-kangaroos

    No full text
    FIGURE 21. Maxillary and upper dental specimens of Bohra bila. QM F43276, partial left adult maxilla (A–C). A: lateral view. B: mesio-occlusal view. C: stereo occlusal view (cast). QM F4740, partial left adult maxilla (D–E). D: lateral view. E: stereo occlusal view. QM F58667, left M2 (F–J). F: stereo occlusal view. G: lingual view. H: buccal view. I: anterior view. J: posterior view.Published as part of <i>Prideaux, Gavin J. & Warburton, Natalie M., 2023, A review of the late Cenozoic genus Bohra (Diprotodontia: Macropodidae) and the evolution of tree-kangaroos, pp. 1-95 in Zootaxa 5299 (1)</i> on page 39, DOI: 10.11646/zootaxa.5299.1.1, <a href="http://zenodo.org/record/8012666">http://zenodo.org/record/8012666</a&gt
    • …
    corecore