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 2 

During the Pleistocene, Australia and New Guinea supported a rich assemblage of large 40 

vertebrates. Why these animals disappeared has been debated for more than a century, and 41 

remains controversial. Previous synthetic reviews of this problem have typically focused heavily 42 

on particular types of evidence, such as the dating of extinction and human arrival, and have 43 

frequently ignored uncertainties and biases that can lead to misinterpretation of this evidence. 44 

Here, we review diverse evidence bearing on this issue and conclude that, although many 45 

knowledge gaps remain, multiple independent lines of evidence point to direct human impact as 46 

the most likely cause of extinction.  47 

 48 

 49 

 50 

 51 

 52 
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 3 

1. Introduction 54 

Alfred Russel Wallace (1876) identified the extinction of the “hugest, fiercest and strangest” 55 

animals from most land environments as one of the most significant biological changes in recent 56 

Earth history [1]. The “marvellous fact” of megafaunal extinction is now far better described than 57 

it was in Wallace’s lifetime, but its cause is controversial. The two most widely accepted agents 58 

of extinction are human impact and climate change, but whether one or the other was dominant 59 

and how their importance varied globally is unclear [2-6].  60 

Sahul — mainland Australia, New Guinea and Tasmania, as connected by dry land 61 

through much of the Pleistocene [7, 8] — is crucial to this debate. This is because people reached 62 

Sahul by an ocean crossing mid-way through the last glacial cycle [9-14]. Later continental 63 

migrations through Eurasia and into the Americas were governed by changing climates in the 64 

approach to the Pleistocene/Holocene transition. These controlled the extent of ice sheets, the 65 

availability of migration routes, and the distribution of environments suitable for people. The 66 

same changes also drove shifts in habitat for megafaunal species, making it difficult to separate 67 

the human and climatic contributions to megafaunal extinction [3]. The decoupling of migration 68 

from these global shifts should allow a clearer test of the impacts of newly arrived humans on 69 

ecosystems in Sahul. 70 

 71 

2. Hypotheses 72 

Today, Sahul has no native terrestrial animal larger than about 40 kg, but for much of the 73 

Pleistocene it supported diverse large vertebrates up to almost three tonnes [6, 15, 16]. The 74 

overkill hypothesis proposes that human hunting drove these animals extinct. Conceivably, this 75 

resulted from selective killing of big animals [17, 18]. It is also possible that non-selective 76 

hunting differentially removed large species because of their low population growth rates and 77 

consequent sensitivity to small increases in mortality [15, 19, 20]. The main alternative to 78 

overkill is the idea that the megafauna disappeared because of climate change. Several authors 79 

argue that over the last 450 ka (thousands of years) the climate of Sahul became more variable 80 

and arid. This is thought to have placed increasing environmental stress on large vertebrates, 81 

reducing their distribution and abundance and causing a staggered series of extinctions over 82 

several glacial cycles [6, 21, 22]. A third hypothesis envisages anthropogenic fire as a cause of 83 

extinction of at least some megafauna. Many of Australia’s extinct megaherbivores appear to 84 

have been browsers, and so presumably benefitted from a high diversity of shrubs and small 85 

trees; perhaps burning removed or degraded habitat for these species [23, 24]. Although these 86 

causal mechanisms can be evaluated independently, they might also have combined in various 87 

ways. 88 

 Several types of evidence can be used to test these hypotheses. Most obviously, evidence 89 

on the timing of extinction and human arrival is essential to show if the extinctions were 90 

synchronized and closely followed human arrival, rather than being spread over some long 91 

interval unrelated to human impact. Data on past climates are needed to test for trends that 92 

might have driven megafaunal decline. The pattern of change in population size preceding 93 

extinction is also crucial: if climate trends caused gradual attrition of megafauna, populations of 94 

large vertebrates should have been in long-term decline under the stress of worsening 95 

environmental conditions before finally disappearing; on the other hand, human impact ought to 96 

have precipitated abrupt decline to extinction of species that need not have been declining 97 

beforehand. Palaeoecological reconstructions can test whether extinctions were associated with 98 

specific environmental changes, particularly shifts in fire regime (possibly caused by people) or 99 

alterations of vegetation state that might have been caused by anthropogenic fire or climate 100 

change. Also relevant is archaeological evidence on interactions between humans and extinct 101 

megafauna.   102 

Here, we synthesise current understanding of this problem. Our review has two main 103 

Aims. First, we aim to encompass the broadest possible range of evidence. This is important 104 
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 4 

because the use of multiple independent lines of evidence is the most promising avenue to 105 

resolve this problem, in Sahul and globally. Second, we address uncertainties and biases that are 106 

inevitable features of data on events from the distant past, but deal with these explicitly in 107 

interpreting evidence. 108 

 109 

3. Human arrival 110 

It is still uncertain when people first set foot on Sahul: it might have been around 50 ka, or as 111 

much as 10 ka earlier [10, 25, 26]. However, it is generally accepted that people were 112 

widespread over the continent by 45 ka or a few millennia earlier [13, 14, 27, 28]. There is as yet 113 

no obvious geographic pattern in first-appearance dates to indicate the progress of a wave of 114 

colonization across Sahul. This is not surprising, because dates older than 40 ka typically have 115 

uncertainty ranges of several thousand years. If people dispersed over Sahul within a few 116 

millennia, we would be unable to resolve that process. Also, we still have few dated sites from 117 

the earliest phase of the prehistory of Sahul. Only 20 archaeological sites have been dated to 40 118 

ka or older [14]; for comparison, the archaeological record in Australia consists of 1,748 dated 119 

sites [29]. Most of the arid centre lacks evidence of human occupation until just after 40 ka [30], 120 

but whether this truly indicates late settlement rather than poor preservation and limited 121 

sampling is unclear. Occupation of Tasmania had to await the emergence of a land bridge at 43 122 

ka [8].  123 

This picture suggests that declines and extinctions of species due to human impact should 124 

have been concentrated in the period 50-40 ka. Quantitative population models suggest that if 125 

hunting was the primary driver of decline, demographic lags might have caused delays of several 126 

hundred to several thousand years between first contact and extinction in any given region [20, 127 

31]. Late occupation of some regions might plausibly have delayed continent-wide extinction 128 

several thousand years more. Taking these factors into account, a concentration of extinctions 129 

between about 50 and 35 ka might be attributable to the impact of human arrival. Later 130 

extinctions are less likely to have been due to direct human impact, although they could 131 

conceivably have resulted from the slow emergence of interactions between human and climate 132 

impacts or other delayed effects of people on ecosystems [32]. Extinctions earlier than 60 ka can 133 

be attributed to non-human factors. 134 

 135 

4. Chronology of megafaunal extinction 136 

There are two contending views on the timing of extinction. A series of recent studies restricted 137 

to specimens and sites dated with high confidence suggest that the extinctions were 138 

concentrated between 50 and 40 ka on mainland Australia [24, 26, 33-36], and slightly later in 139 

Tasmania [37]. On the other hand, more extensive compilations of occurrences in the fossil 140 

record, lacking controls on date quality, suggest staggered extinction through the period from 141 

400 to about 20 ka [6]. 142 

Two methodological problems affect these inferences. First, dates on fossil remains are 143 

subject to many technical limitations and potential biases. Therefore, it is necessary to screen 144 

date-lists for reliability. Because in Sahul the period of potential human-megafauna overlap is 145 

close to or beyond the limit of 14C dating, a wide range of techniques in addition to 14C has been 146 

applied to the problem, making it difficult to standardise the reliability of age determinations. In 147 

response, we developed a set of criteria for assessing reliability of age determinations across the 148 

full range of methods applied to Quaternary palaeontology and archaeology, and used these to 149 

assess reliability of all published age estimates on Sahul’s extinct megafauna [38]. Figure 1 150 

illustrates the impact of screening of dates using the example of Diprotodon sp., the largest 151 

marsupial. There are approximately 100 ages on Diprotodon from > 1 million years to 2 ka. After 152 

filtering for reliability only 23 reliable dates remained, none younger than 44 ka. 153 

 The second problem is sparse sampling in the fossil record. Many megafaunal taxa from 154 

Sahul are represented by few specimens, of which even fewer have reliable dates. The date of 155 
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extinction of a species is inferred from absence of fossils, but when we have only few dates this 156 

inference is highly uncertain. This uncertainty can create the appearance of staggered extinction 157 

even if all species disappeared at the same time [39]. To draw statistically robust inferences on 158 

the pattern of extinction of assemblages of species, we need quantitative approaches that infer 159 

probability intervals for extinction from the incomplete presence data furnished by the fossil 160 

record [40-42].  161 

A recent study addresses both problems. Saltré et al. [26] compiled all available dates on 162 

Australia’s Pleistocene megafauna and screened them for reliability [38], then derived 163 

statistically robust estimates of extinction timing for the 14 genera with sufficient reliable dates 164 

for analysis. They concluded that these genera went extinct between ~61 and 35 ka, with a peak 165 

in extinction probability at 42.1 ka. The picture remains incomplete because we cannot infer 166 

extinction chronologies for many poorly-dated taxa, representing as many as 15 [6] genera.  167 

 168 

5. Climate trends and variability 169 

The Quaternary record of terrestrial climate change in Sahul is sparse, so climate trends are 170 

mainly inferred from ice cores in Antarctica and syntheses of marine sequences, which indicate 171 

broad trends in temperature. Unusually warm interglacials and cool glacials are irregularly 172 

distributed through almost the entire 800 ka of the EPICA Dome C ice-core from Antarctica [43]. 173 

Several syntheses have suggested a cooling trend over the last million years, with variable 174 

expression of the Mid-Brunhes event at ~ 430 ka, but this is not universally recognised [44-46]. 175 

Records of sea-surface temperatures near Sahul in the Coral Sea [47, 48] do not show cooling 176 

over the last million years, nor increased variability across the Mid- Brunhes event or thereafter 177 

[46]. There is no clear trend through the last million years in the rate of change in oxygen-178 

isotope composition in the global benthic oxygen-isotope record (the LR04 stack) [49]. 179 

Some authors have suggested [6] that the EPICA Dome C ice core reveals increasing 180 

variability in temperature proxies over the last 450 ka. We tested for this at millennial time 181 

scales by calculating the mean deviation (sum of absolute differences from the mean divided by 182 

the number of measurements) in δD (deuterium; this is a proxy for temperature, in which more 183 

negative values indicate lower temperatures) from 450 ka to the present in this core. A challenge 184 

for this analysis is that the time resolution of the core increases towards the present. For 185 

example, the mean interval between successive temperature estimates for the last 12.2 ka is 12.2 186 

years, increasing to 418.6 years from 500 to 550 ka. Fluctuations on short time-scales are 187 

therefore more likely to be visible in recent parts of the record. To control for this uneven 188 

sampling we resampled 1000 times (with a random uniform start date from within the first 189 

interval) increasing temporal window lengths from 3 ka to 12 ka across the series to 450 ka. For 190 

each resampled interval width, we calculated the mean deviation and tested for a linear trend of 191 

increasing mean deviation toward the present. We used the range of evidence ratios (ER) to 192 

compare the slope model (trend in increasing mean deviation toward the present) to the 193 

intercept-only (null) model with no trend. An ER >> 1 would support a linear change over the 194 

null ‘no trend’ model, and thus the claim that variability increased. The linear trend model was 195 

rarely favoured, the slope of the trend being near zero (supporting the null model) for most 196 

sampling intervals (Fig. 2a). To visualise the absence of trend, we resampled at an interval of 3 197 

ka (to ensure at least 5 temperature values were available to calculate mean deviations) over 198 

1000 iterations, splitting the 450 ka-to-present series into four periods (24-156 ka, 156-271 ka, 199 

271-342 ka and 342-437 ka – Fig. 2b), and calculated the temperature mean deviations for each 200 

interval and iteration. The temperature record actually became less variable from 450 to 156 ka; 201 

variability then increased, but only slightly, from 156 to 24 ka (Fig. 2c). 202 

Much of the discussion of environmental stress on megafaunal populations has focussed 203 

on moisture availability rather than temperature [50]. The last few glacial-interglacial cycles 204 

(excluding the current interglacial) have been characterised by wetter conditions during 205 

interglacial stages and comparatively arid conditions during glacials [51-55]. However, available 206 
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moisture records not support the existence of a strong trend to increasing aridity over the last 207 

few glacial cycles.  208 

There is little evidence for exceptional climate change around the time of human arrival. 209 

During MIS (Marine Isotope Stage) 3 (57 to 29 ka) dust flux into the Tasman Sea from south-210 

eastern Australia, and into the Indian Ocean from north-western Australia, remained 211 

approximately constant [52], and there was no substantial variation in summer rainfall and dry 212 

season length over the Arafura Sea [56] or in discharge from the Murrumbidgee River in south-213 

eastern Australia [57]. Australian palaeo-lake levels were high in early MIS 3, generally 214 

decreasing after 48-42ka over a period of 10-15ka [50, 54, 55]. Millennial-scale Asian monsoon 215 

variability, which is probably coupled with Australian monsoon variability, is similar in 216 

amplitude throughout the interval 60-30 ka [58-60]. While grass pollen is anomalously high off 217 

northwest Australia during the last interglacial [61, 62], this was evidently not part of a longer 218 

trend to increased aridity in northern Australia. Water levels in the Lake Eyre and Lake Frome 219 

mega-lakes, in the southeast of the arid zone, fell between 50 and 40 ka, after which those lakes 220 

filled only intermittently [50]. Possibly, this drying provides an explanation for the extinction of 221 

the giant bird Genyornis newtoni in that region [50], although it is unknown if these changes 222 

were exceptional or typical of a pattern that recurred through successive glacial cycles. 223 

  224 

6. Trends in megafaunal abundance 225 

Trends in abundance of species cannot easily be inferred from the fossil record, because the 226 

abundance of fossils varies for many reasons unrelated to abundance in the source populations, 227 

such as age-dependent preservation bias [63, 64] or stochastic variation in conditions affecting 228 

the likelihood of preservation. Three datasets attempt to overcome these problems in different 229 

ways. 230 

First, cave deposits from subterranean galleries with openings to the surface that act as 231 

passive pitfall traps should accumulate remains at rates roughly proportional to population 232 

abundance. If conditions for preservation are excellent there may be little loss of fossil material 233 

over the period of accumulation. Two such cases from southern Australia, spanning periods of 234 

500 to 150 ka, revealed long-term stability in the mammalian assemblage, despite climate-235 

related variation in the relative abundance of small and large species. Large species declined 236 

relative to smaller ones during dry periods, probably due to local range contractions, but 237 

rebounded subsequently [65, 66]. 238 

Second, comparison of the frequencies through time of remains of species that are subject 239 

to similar preservation biases may reveal shifts in their relative abundance [64]. Genyornis 240 

newtoni was a flightless, ground-nesting bird with a distribution overlapping the emu Dromaius 241 

novaehollandiae, another flightless ground-nester. Eggshells of both birds are abundant in the 242 

same sedimentary contexts and so are subject to the same processes of deposition and 243 

preservation, and are dateable by the same methods [24, 67]. If abundances of fossil eggshells of 244 

both species are affected by the same biases, the ratio of their abundances should be free of bias. 245 

Changes in that ratio through time depict trends in the abundance of a species that went 246 

extinct—Genyornis—relative to a species that survived (emu). Figure 3 collates the relative 247 

abundance of Genyornis and emu eggshells through time, and shows that Genyornis tended to 248 

decline relative to the emu from the last interglacial to about 70ka, then increased from about 65 249 

to 50 ka, before crashing to extinction just after 50 ka. 250 

Third, spores of fungi (Sporormiella spp. and others) that sporulate on the dung of large 251 

herbivores indicate the presence of those animals in past environments [68, 69]. The spores are 252 

abundant and so provide a continuous measure of activity of large herbivores that can be 253 

quantified as spore-influx rates or indexed relative to pollen counts. A dung-fungus record from 254 

north-eastern Australia showed no trend from 130 ka until a steep decline at about 41 ka [70]. 255 

This decline cannot be explained by climate, which was evidently stable at the time [71]. 256 

Analysis of potential deposition biases suggest that the drop in dung fungi was a genuine 257 
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 7 

indicator of an abrupt decline of the biomass of large herbivores [68].  258 

Studies of ancient DNA in other regions have revealed long-term trends in population size 259 

[3], and local extinctions [72-74]. Unfortunately, we have little genetic information on Sahul’s 260 

extinct megafauna because of poor DNA preservation in this region. Recent advances in 261 

molecular techniques have resulted in the first complete mitochondrial genome sequences of 262 

extinct marsupial megafauna [75]. These methods hold promise for phylogenetic and 263 

demographic studies, but population genetic analyses are currently out of reach. 264 

 265 

7. Palaeoecological reconstructions 266 

Prideaux et al. [76] reconstructed the ecology of Procoptodon goliah, a large kangaroo that once 267 

occurred through semi-arid southern and eastern Australia [77]. Dental morphology and 268 

microwear showed that P. goliah had a tough browse diet, and stable isotopes confirmed that a 269 

major component was C4 chenopods (saltbush, Chenopodiaceae). Chenopod shrublands remain 270 

widespread through the southern semi-arid and arid zones. Because chenopods are poorly 271 

flammable, it seems unlikely that anthropogenic fire had a large impact on P. goliah’s habitat, but 272 

the species could have been highly exposed to hunters in its shrubland habitat.  273 

 At the Lynch’s Crater site, Rule et al. [70] used counts of spores of dung fungi, pollen 274 

grains and charcoal particles to reconstruct environmental changes associated with megafaunal 275 

extinction. Before the decline of dung fungi at 41 ka, the vegetation around the site was a 276 

mixture of angiosperm and gymnosperm rainforests and dry sclerophyll forest with little or no 277 

fire. Decline of dung fungi was closely followed by a sharp increase in the influx of charcoal and a 278 

more gradual change in vegetation composition leading to replacement of the original mixed 279 

forest by uniform sclerophyll forest of higher density. Possibly, increased fire was caused by a 280 

build-up of fine fuel following the relaxation of herbivory, while vegetation changes resulted 281 

from some combination of release from herbivore pressure and impacts of fire. A parallel study 282 

at a cool alpine site in south-eastern Australia [78] also revealed a steep and unprecedented 283 

drop in dung fungi in the middle of the last glacial cycle, but this was not accompanied by any 284 

change in fire activity or vegetation, which remained a grass/shrub steppe. 285 

Stable isotope analysis of eggshells showed that extinction of Genyornis coincided with a 286 

sustained change in diet of sympatric emus, from mixed feeding on C3 and C4 plants to 287 

predominantly C3 plants [24]. The change was unprecedented in a record reaching back to 140 288 

ka and cannot be attributed to climate, but its cause remains unclear. Possibly, an altered fire 289 

regime induced a shift in the composition of vegetation, but there are no suitable charcoal 290 

records to verify this. Alternatively the change in emu diet could reflect vegetation change 291 

resulting from megaherbivore extinction. This also cannot be tested owing to the lack of pollen 292 

records for the arid zone. A marine core with a source area overlapping part of the same region 293 

shows a transient increase in biomass burning from 43 to 40 ka [79] and an excursion to C3-294 

dominated vegetation; a low-resolution terrestrial record to the southwest, in the same climate 295 

zone, reveals no such increase in charcoal [80]. 296 

 A synthesis of charcoal records from the Australasian region found some indication of 297 

increased charcoal input between 50 and 40 ka but the deviation during that period was small 298 

compared to variation before 50 and after 40 ka [81]. Some sites do show charcoal peaks around 299 

the time of human arrival and megafaunal extinction, but others do not. Some caution in the 300 

interpretation of charcoal records is warranted, because human and natural fire regimes might 301 

differ in their ecological effects while producing similar influxes of charcoal, especially when 302 

these are averaged over long intervals. Also, many charcoal records have only loose 303 

chronological control through the crucial period between 50 and 35 ka, so sharp changes could 304 

be obscured by imprecision when different records are combined. Bearing these reservations in 305 

mind, it is unlikely that human firing of Sahul landscapes produced continent-wide impacts, 306 

although some environments may have sensitive to changes in the frequency and timing of 307 

ignition with human colonization. 308 
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 309 

8. Human-megafauna interaction 310 

Archaeological evidence of hunting is rare and questionable for most species of Sahul’s 311 

megafauna [15]. The one clear exception is the giant bird Genyornis [82]. Some eggshells of 312 

Genyornis show distinct charring patterns indicating they were heated over campfires, but only 313 

from 54 to 47 ka, during the interval when Genyornis declined to extinction. Similar charring 314 

patterns first appear on emu eggshells at the same time, and continue thereafter. Simultaneous 315 

onset of charring at widespread locations provides a signal of the early arrival and rapid spread 316 

of human populations through the arid regions of southern Australia. It also shows that these 317 

early populations exerted hunting pressure that could have contributed to the extinction of 318 

Genyornis. 319 

 Otherwise, does the lack of evidence for hunting of other species mean that hunting must 320 

have been negligible, as several authors have argued [6, 83, 84]? Surovell and Grund [85] argue 321 

that for Sahul especially, archaeological evidence of hunting of species that went extinct soon 322 

after human arrival ought to be rare even if that hunting was ecologically important. The main 323 

reason is that, given the early date of human arrival, the period of interaction between humans 324 

and extinct megafauna is only a small proportion of the total archaeological record of Sahul. 325 

Further, the quantity of evidence should be limited by the fact that hunting rates would have 326 

been highest early in the interaction when hunted populations were abundant but human 327 

populations were still small and of low archaeological visibility, and the effects of time-328 

dependent loss of evidence would increase the rarity of signs of human-megafauna interaction. 329 

The predicted rarity of this evidence means that a very large archaeological and palaeontological 330 

sample would be needed to detect it, and it would be dangerous to use the failure to detect such 331 

evidence in a small sample to conclude that no such interaction occurred. Given these 332 

considerations, it is not surprising that the strongest evidence for hunting comes from Genyornis, 333 

whose remains are outstandingly abundant (1,327 eggshell collections[82]).  334 

 335 

9. Conclusions   336 

Evidence on causes of megafaunal extinction in Sahul is still patchy: we have less information on 337 

the changing climate of Sahul through the Middle and Late Pleistocene than for other parts of the 338 

world; many species that went extinct during this period are poorly dated; we have few 339 

archaeological sites attesting to the timing and pattern of early human occupation; and we lack 340 

detailed ecological information for most extinct megafauna. As a result, we still lack a detailed 341 

picture of the processes leading to megafaunal extinction in Sahul. Nonetheless, the weight of the 342 

evidence that we do have points clearly to direct human impact as the main cause of extinction. 343 

Although it is likely that there was a general cooling trend over Sahul through much of the 344 

Pleistocene, the evidence that megafaunal extinction was related to an increased rate of drying 345 

and amplified climate variability is weak at best. There were periods of aridity in the last glacial 346 

cycle, but they appear not to have been exceptional in comparison with previous cycles. There is 347 

no rigorously tested evidence for a staggered series of extinctions, either within the last glacial 348 

cycle or over several glacial cycles. Instead, high-quality dates indicate synchronous extinction 349 

within a few thousand years of human arrival. Where it is possible to interpret dynamics of 350 

megafaunal populations, populations appear to have crashed to extinction shortly after human 351 

occupation of Sahul rather than declining gradually over long periods beforehand. For species 352 

with well-described habitat preferences, it is clear that the animals disappeared despite their 353 

habitat remaining widespread. Reconstruction of the environmental context of extinction 354 

suggests that extinction preceded vegetation change, and that increased fire (where it occurred) 355 

was a consequence rather than a cause of decline of large herbivores. 356 

Extinction of megafauna in Sahul presaged comparable losses on other continents and 357 

large islands over the last 50,000 years. Because the arrival of people in Sahul in the middle of 358 

the last glacial cycle was the first time in Earth history that modern humans reached a large 359 
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landmass not already occupied by other hominids, Sahul provides an exceptionally valuable case 360 

for our understanding of the impacts of early humans on naïve ecosystems. The evidence 361 

summarized here for a dominant role of direct human impact is therefore globally significant. 362 

Several recent analyses of global databases agree in finding a dominant role for humans in most 363 

of the world [2, 5, 86]. The evidence from Sahul in these analyses is less clear, probably because 364 

the data on Sahul’s megafauna were relatively sparse and of variable quality. The more 365 

comprehensive approach to data sources in this review is therefore valuable in clarifying 366 

evidence on the relative contributions of humans and climate to megafaunal extinction in Sahul, 367 

and strengthening support for a consistently large global impact of early humans on the diversity 368 

of large vertebrates.     369 
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LEGENDS TO FIGURES 645 

 646 

Figure 1. Time-series of dated specimens of Diprotodon sp, arranged in sequence from youngest 647 

to oldest, with ± 1 standard deviation. High-reliability dates [38] are black and low-quality dates 648 

grey; youngest reliable date is arrowed. Diprotodon sketch by Peter Murray. 649 

 650 

Figure 2. Trends in variability of temperature in the EPICA Dome C core over the last 450,000 651 

years. (a) Evidence ratio for linear trend in mean deviation in EPICA δD (δ deuterium = a proxy 652 

for temperature: more negative values indicate lower temperatures) from 450 to 24 ka (ER >> 1 653 

indicates evidence for linear trend) across sampling intervals of increasing width; also shown is 654 

the mean trend slope (β) per sampling interval width; (b) Example EPICA temperature series 655 

resampled at a constant window of 600 years from present back to 450 ka; (c) Average and 95 656 

percentile mean deviation of temperature within the four penultimate interstadials since 450 ka. 657 

 658 

Figure 3. Relative abundance of eggshells of Genyornis and emu Dromaius novaehollandiae 659 

through the last glacial cycle: (a) and (b) numbers of dated samples from Genyornis and emu 660 

respectively, from [24]. (c) Ratio of frequencies of Genyornis to emu samples, with 95% 661 

confidence intervals, calculated using a moving window (scaled to density of samples) to 662 

generate a smoothed curve. 663 

Page 16 of 18

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



  

 

 

 

167x124mm (300 x 300 DPI)  

 

 

Page 17 of 18

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



  

 

 

 

271x475mm (300 x 300 DPI)  

 

 

Page 18 of 18

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



  

 

 

 

207x312mm (300 x 300 DPI)  

 

 

Page 19 of 18

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only


	What caused extinction of the pleistocene megafauna of sahul?
	Recommended Citation

	What caused extinction of the pleistocene megafauna of sahul?
	Abstract
	Disciplines
	Publication Details
	Authors

	tmp.1461130572.pdf.RigYs

