188 research outputs found

    Effects of Short-term Soil Conditioning by Cheatgrass and Western Wheatgrass

    Get PDF
    The exotic grass Bromus tectorum (cheatgrass) is a ubiquitous invader in the western USA. Cheatgrass is a proficient competitor, frequently displacing native plants, forming monotypic stands and reducing biodiversity in ecosystems it invades. Our experiment tested whether short-term soil modification by cheatgrass and a predominant native grass, Pascopyrum smithii (western wheatgrass), affected subsequent growth of both species. We compared productivity of cheatgrass and western wheatgrass by harvesting aboveground biomass of plants grown in either cheatgrass- or western wheatgrass-conditioned soils over two simulated growing seasons. Results indicated that cheatgrass soils do not inhibit the productivity of the native grass, but do facilitate further growth of cheatgrass. Cheatgrass may alter soil characteristics, allowing it to invade other plant communities, but cheatgrass invaded soil did not inhibit growth of the native species studied here. This suggests that restoration with native species after control of cheatgrass may be possible

    Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    Get PDF
    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures

    Response of a mixed grass prairie to an extreme precipitation event

    Get PDF
    Citation: Concilio, A. L., Prevey, J. S., Omasta, P., O'Connor, J., Nippert, J. B., & Seastedt, T. R. (2015). Response of a mixed grass prairie to an extreme precipitation event. Ecosphere, 6(10), 12. doi:10.1890/es15-00073.1Although much research has been conducted to measure vegetation response to directional shifts in climate change drivers, we know less about how plant communities will respond to extreme events. Here, we evaluate the response of a grassland community to an unprecedented 43 cm rainfall event that occurred in the Front Range of Colorado in September, 2013 using vegetation plots that had been monitored for response to simulated precipitation changes since 2011. This rain caused soils to stay at or above field capacity for multiple days, and much of the seed bank germinated following the early autumn event. Annual introduced grasses, especially cheatgrass (Bromus tectorum), and several introduced forbs demonstrated strong positive increases in cover the following growing season. Native cool season grasses and native forbs showed limited changes in absolute cover despite continued high soil water availability, while native warm season grasses increased in cover the following summer. Treatments that previously altered the amounts and seasonality of rainfall during the 2011-2013 interval showed legacy effects impacting cover responses of introduced species and warm-season native grasses. Resin bag estimates of inorganic nitrogen flux resulting from the event indicated twice as much nitrogen movement compared to any previous collections during the 2011-2013 interval. Nitrogen additions to a subset of plots made in spring of 2014 demonstrated that the relative cover of introduced species could be further increased with additional soil nitrogen. Collectively, these results support the contention that extreme precipitation events can favor species already benefiting from other environmental change drivers

    High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2Ļˆ technique

    Get PDF
    The aim of the research is to optimise the XRD-sin2Ļˆ technique in order to perform high precision measurement of surface residual stress. Residual stresses existing in most hard coatings have significant influence on the adhesion, mechanical properties and tribological performance. In the XRD-sin2Ļˆ stress measurement, the residual stress value is determined through a linear regression between two parameters derived from experimentally measured diffraction angle (2Īø). Thus, the precision coefficient (R2) of the linear regression reflects the accuracy of the stress measurement, which depends strongly on how precise the 2Īø values are measured out of a group of very broad diffraction peaks. In this research, XRD experiments were conducted on a number of samples, including an electron beam evaporated ZrO2 based thermal barrier coating, several magnetron sputtered transitionmetal nitride coatings, and shot-peened superalloy components. In each case, the diffraction peak position was determined using different methods, namely, the maximum intensity (Imax) method, the middle point of half maximum (MPHM) intensity method, the gravity centre method, and the parabolic approaching method. The results reveal that the R2 values varied between 0.25 and 0.99, depending on both the tested materials and the method of the 2Īø value determination. The parabolic approaching method showed the best linear regression with R2=0.93Ā±0.07, leading to high precision of the determined residual stress value in all cases; both the MPHM (R2=0.86Ā±0.16) and gravity centre (R2=0.91Ā±0.11) methods also gave good results in most cases; and the Imax method (R2=0.71Ā±0.27) exhibited substantial uncertainty depending on the nature of individual XRD scans

    Evaluation of Residual Stress in 300m Steels Using Magnetization, Barkhausen Effect and X-Ray Diffraction Techniques

    Get PDF
    This investigation was undertaken to compare the techniques of x-ray diffraction, Barkhausen effect and magnetization measurement as methods of nondestructive evaluation of stress in shot peened 300M steel. In particular we were concerned with the estimation of the level of prevailing applied stress and the compressive overload (plastic deformation) which the samples had been subjected to. The 300M steel used in this study is a constructional material for the landing gears of aircraft, and as these components will eventually experience fatigue failure if not replaced, it was of interest to develop NDE techniques for the assessment of the mechanical condition of landing gears of in-service aircraft

    Sensitivity analysis of periodic matrix population models

    Get PDF
    Author Posting. Ā© The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Theoretical Population Biology 82 (2012): 329-339, doi:10.1016/j.tpb.2012.03.008.Periodic matrix models are frequently used to describe cyclic temporal variation (seasonal or interannual) and to account for the operation of multiple processes (e.g., demography and dispersal) within a single projection interval. In either case, the models take the form of peri- odic matrix products. The perturbation analysis of periodic models must trace the e ects of parameter changes, at each phase of the cycle, on output variables that are calculated over the entire cycle. Here, we apply matrix calculus to obtain the sensitivity and elasticity of scalar-, vector-, or matrix-valued output variables. We apply the method to linear models for periodic environments (including seasonal harvest models), to vec-permutation models in which individ- uals are classi ed by multiple criteria, and to nonlinear models including both immediate and delayed density dependence. The results can be used to evaluate management strategies and to study selection gradients in periodic environments.This research was supported by NSF Grant DEB-0816514, by a Research Award from the Alexander von Humboldt Foundation, and by WHOI Academic Programs Funds

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    Get PDF
    Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra

    Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?

    Get PDF
    Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of ā€œconnectional diaschisis.

    Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?

    Get PDF
    Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of ā€œconnectional diaschisis.
    • ā€¦
    corecore