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Abstract

Periodic matrix models are frequently used to describe cyclic temporal variation (seasonal
or interannual) and to account for the operation of multiple processes (e.g., demography and
dispersal) within a single projection interval. In either case, the models take the form of peri-
odic matrix products. The perturbation analysis of periodic models must trace the effects of
parameter changes, at each phase of the cycle, on output variables that are calculated over the
entire cycle. Here, we apply matrix calculus to obtain the sensitivity and elasticity of scalar-,
vector-, or matrix-valued output variables. We apply the method to linear models for periodic
environments (including seasonal harvest models), to vec-permutation models in which individ-
uals are classified by multiple criteria, and to nonlinear models including both immediate and
delayed density dependence. The results can be used to evaluate management strategies and to
study selection gradients in periodic environments.

Keywords: periodic environments; seasonal models; nonlinear models; sensitivity analysis;
elasticity analysis; matrix calculus;

1 Introduction

Periodic matrix models are often used to study cyclical temporal variation (seasonal or interannual)
or when multiple processes (e.g., demography and dispersal) operate within a single projection
interval. The models take the form of periodic matrix products. A familiar example is when
population projection over an annual interval is described as a product of seasonal operators. The
perturbation analysis of such periodic models (Caswell and Trevisan 1994, Lesnoff et al. 2003) must
specify both the vital rates affected by the perturbation and the timing of the perturbation within
the cycle. In this paper, we present a general approach to the perturbation analysis of both linear
and nonlinear periodic models. Our results consist of a series of formulae (summarized in Table 3)
that apply directly to some of the most commonly encountered periodic models. The formulae are
easily computable in a matrix-oriented language such as Matlab or R.

If the environment is time-invariant on the scale of the projection interval (i.e., from year to
year), the result is a periodic matrix population model in which the seasonal product repeats itself.
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Such a model can be written as

n(t+ 1) = Bp · · ·B2B1n(t) (1)

Here, Bi is the matrix at phase i of the cycle and p is the period. The period is the number of
phases in the cycle; i.e., the number of matrices in the periodic matrix product in (1). The identities
or the numbers of stages need not be the same from one phase to the next, so the matrices Bi may
be rectangular rather than square. The phases need not be the same length, so the period may
or may not be measured in units of time. For example, the model of Pico et al. (2002) contains
six phases, each of 2 months duration, and the period (p = 6) corresponds directly to a time scale.
In contrast, the model of Hunter and Caswell (2005a) has three phases, with durations about 3
weeks, 5 weeks, and 10 months, respectively. The period (p = 3) of the model does not correspond
to a time scale, but it identifies the number of matrices in the periodic product and appears in
calculations in the same role as p = 6 in the model of Pico et al. (2002).

The projection matrix over the entire periodic cycle is1

A = Bp · · ·B2B1 (2)

The earliest studies of periodic matrix models were due to Darwin and Williams (1964), Skellam
(1966), and MacArthur (1968). In recent years, with little fanfare, they have emerged as an
important tool for incorporating multiple processes within a single projection interval. Some recent
examples of their use include the following.

1. Seasonal variation. Early examples include Sarukhan and Gadgil (1974) and Lebreton and
Isenmann (1976). Recent examples include studies of plants (Vavrek et al. 1997, Pico et al.
2002, Smith et al. 2005) and animals (Spencer and McGee 2001 for amphipods, Blomberg
and Shine 2001 for lizards, Yoccoz et al. 1998 and Lima et al. 2003 for rodents, Lima et al.
2001 for the mouse opposum, Lesnoff et al. 2000 for a study of disease control in domestic
sheep). Seasons have been variously defined in terms of monthly periods, calendar seasons,
or in terms of environmental events such as rainfall or flood patterns (Lesnoff 1999, LeCorff
and Horvitz 2005, Smith et al. 2005, Schleuning et al. 2008).

Although annual or near-annual species are obvious candidates for periodic models (Hyatt and
Araki 2006, Ramula and Buckley 2010, Smith et al. 2005, Steets et al. 2007, Ramula 2008),
within-year time scales may also be important for long-lived species. Hunter and Caswell
(2005a) incorporated chick development events on a time scale of weeks into a periodic model
for the sooty shearwater, which has a lifetime of decades. Jenouvrier et al. (2010) used
periodic models to capture the timing of events in the breeding cycle of the emperor penguin.

1Although we will not address it in this paper, the model (1) can be written in a way that explicitly defines the
starting phase in the cycle. As written, A in (2) projects from phase 1 to phase 1; if desired we could write this as
A1 and define matrices

A2 = B1Bp · · ·B2

...

Ap = Bp−1 · · ·B1Bp

The Ai are obtained by cyclic permutations of the sequence {Bp, . . . ,B1}; each of these projects from a different
phase in the cycle. Some demographic properties (e.g., the population growth rate λ) are invariant with respect to
such permutations; others (e.g., the eigenvectors) are not (Caswell 2001). In this paper, we will start with phase 1
and refer to A rather than A1.

2



2. Periodic interannual variability. Periodic models based on sequences of annual observations
(e.g., Mandujano et al. 2001 for a cactus, Golubov et al. 1999 for a shrub), variations in
rainfall (Mondragon et al. 2004 for an epiphyte, Vega and Montana 2004 for a grass), fire
intervals (Gross et al. 1998, Hoffmann 1999, Caswell and Kaye 2001, Sinha and Brault 2005,
Stokes et al. 2004), snowfall variation (Griffith et al. 2010), ENSO effects (Awkerman et al.
2006), pond levels (Ripley et al. 2004), and food availability (Gervais et al. 2006).

3. Harvest and management. These often take place at specific points within an annual or
interannual cycle. Periodic models have been used to study the effects of disturbance (Pagel
et al. 2008, Rydgren et al. 2001, Prevey et al. 2010), crop rotation (Davis et al. 2003, 2004,
Westerman et al. 2005, Mertens et al. 2002, van den Berg et al. 2010), and harvest (e.g.,
Darwin and Williams 1964, Hauser et al. 2006).

4. Conditional probabilities. Periodic matrix products appear when models are written as prod-
ucts of conditional probabilities. In multistate mark-recapture methods, for example, a tran-
sition matrix, say U, is written as the product of a diagonal matrix Σ of survival probabilities
and a matrix G of transition probabilities conditional on survival:

U = GΣ (3)

Likelihood functions are derived in terms of the matrices G and Σ (e.g., Lebreton and Pradel
2002).

5. Multiple classifications. When individuals are classified by two or more criteria (e.g., stage
and location), the dynamics over the projection interval can be described in terms of the
processes affecting each criterion (e.g., transitions and movement). The result is a periodic
model that uses the vec-permutation matrix to generate a block-structured projection matrix
over the entire interval. This approach was introduced by Hunter and Caswell (2005b) to
study classifications by stage and spatial location (see applications by Ozgul et al. 2009,
Goldberg et al. 2010, Strasser et al. 2010). It has been applied to stage and environmental
state (Caswell 2006, 2009b, 2011a), stage and infection status (Klepac and Caswell 2010),
and stage and age (Caswell 2011b). Megamatrix models (e.g., Pascarella and Horvitz 1998,
Horvitz and Tuljapurkar 2008) are a special case of the vec-permutation approach, as are
block-structured multiregional matrix models (e.g., Lebreton 1996).

6. Nonlinear models. Henson and Cushing (1997) developed a model for Tribolium in an exper-
imental system in which container size was varied periodically. Shyu et al. (in prep.) have
developed a nonlinear seasonal model of an invasive plant to account for the timing of both
density effects and management actions within the year. In such models, cyclic dynamics
can be produced both by the environmental periodicity and the nonlinearities (e.g., Cushing
2006).

1.1 Perturbation analysis

The goal of perturbation analysis is to find the sensitivity or elasticity of some output variable ξ
to a vector of parameters, which we will denote by θ (Figure 1). The output variable may be a
scalar (e.g., population growth rate), or a vector (e.g., the stable stage distribution), or a matrix
(e.g., the fundamental matrix). The parameter vector θ may contain matrix entries, lower-level
parameters determining the matrix entries, or coefficients appearing in functions of time, density,
or environmental factors.
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Table 1: Table of symbols used in the paper.
Symbol Meaning
si number of stages at phase i of the cycle
p period of the cycle
q dimension of parameter vector θ
r number of locations in spatial model
θi parameter vector evaluated at phase i
Bi projection matrix from phase i to phase i+ 1, or in location i

Cj
i ordered product Bj · · ·Bi of matrices from i to j

Mi dispersal matrix for stage i
A projection matrix over entire cycle
Ai projection matrix over cycle, starting at phase i
Ri matrix of LTRE contributions from phase i
Es,i s× s matrix with 1 in (i, i) position and 0 elsewhere
Is identity matrix of dimension s
D(x) diagonal matrix with x on the diagonal
e vector of ones
B, M, etc. block-structured matrices
◦ Hadamard, or element-by-element product
⊗ Kronecker product

In phase i of the cycle, the parameter vector takes on the value θi and determines Bi. The
projection matrix A is the periodic product of the Bi. Although the output ξ is calculated from A,
the parameter dependence operates through the Bi (Figure 1). The sensitivity of ξ to the elements
of A is in general not of interest, because those elements are complicated expressions involving the
elements of all the Bi, and thus mix disparate biological processes. Caswell and Trevisan (1994)
introduced an way to calculate the sensitivity of population growth rate to entries of the Bi, which
was refined by Lesnoff et al. (2003). However, the method is limited to linear models and is not
easily extended to more complicated models or to chain rule expressions.

In this paper, we present a new approach to perturbation analysis of periodic models, taking
advantage of the ability of matrix calculus to compute derivatives of scalar-, vector-, or matrix-
valued functions of scalar-, vector-, or matrix-valued arguments. A short introduction to matrix
calculus appears in Online Supplement A. For a mathematical introduction, see Abadir and Magnus
(2005); for introductions in the context of population models, see Caswell (2007, 2008), and for
a complete mathematical treatment see Magnus and Neudecker 1985. Matrix calculus has been
applied to a number of ecological models (Caswell 2006, 2007, 2008, 2009a,b, 2010, 2011b,c, Verdy
and Caswell 2008, Klepac and Caswell 2010, Strasser et al. 2010).

We will focus on three cases that together include many of the recent examples listed above.
In Section 2 we consider linear models of the form of (1) and examine a simple harvest model. In
Section 3 we analyze vec-permutation models for multiple classifications. In Section 4 we analyze
cyclic dynamics in a nonlinear periodic model including delayed density effects. An important
application of sensitivity results is in the LTRE decomposition of effects of changes in parameters,
and we present the necessary calculations in Section 5. Our results make it possible to analyze
effects of changes at any point in a periodic environment. We conclude with a discussion and
recommendations for implementation.
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Figure 1: A vector θ of parameters determines an output variable ξ, which may be a scalar, vector,
or matrix. The parameter vector will generally take on different values at each phase in the cycle,
and determine the phase-specific matrix Bi. These matrices determine the projection matrix A as
a periodic matrix product; the output variable is computed from A. The perturbation problem is
to compute the sensitivity or elasticity of ξ to θ.

2 Linear models

Consider the basic model (1) with projection matrix (2). The period of the cycle is p. To allow for
differences in the state vector at different phases within the cycle, define the number of stages at
phase i as si. Thus the matrix Bi is of dimension si+1×si, with the subscript i interpreted mod(p)
(that is, (p+ 1) mod(p) = 1).

Let ξ (dimension m × 1) denote an output variable calculated from A, where ξ might be a
scalar, a vector, or a vectorized matrix. Let θ (q × 1) be the parameter vector. The derivative of
ξ with respect to θ is the m× q matrix

dξ

dθT
=
(

dξi
dθj

)
i = 1, . . . ,m; j = 1, . . . , q (4)

By the chain rule, all the effects of the parameters on ξ are captured in the matrix product

dξ

dθT
=

dξ

dvec TA
dvec A
dθT

. (5)

The first term in (5) is the derivative of the output variable ξ with respect to the matrix A from
which it is calculated. For example, if the dependent variable is the population growth rate λ, then

dξ

dvec TA
=

dλ

dvec TA
= (wT ⊗ vT) , (6)

where w and v are the right and left eigenvectors corresponding to λ, scaled so that vTw = 1
(Caswell 2010).
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The second term in (5) is the derivative of the periodic product matrix A with respect to the
parameter vector θ. To obtain this, differentiate (2), to obtain

dA = Bp · · ·B2d (B1) + · · ·+ d (Bp) Bp−1 · · ·B1 (7)

It is convenient to define the matrix Cj
i as the ordered product of the B matrices from i up to j:

Cj
i = Bj · · ·Bi i ≤ j (8)

and set C0
1 = Cp

p+1 = Is1 . Then (7) becomes

dA = Cp
2 (dB1) + Cp

3 (dB2) C1
1 · · ·+ (dBp) Cp−1

1 (9)

Applying the vec operator to both sides gives

dvec A =
p∑

i=1

[(
Ci−1

1

)T ⊗Cp
i+1

]
dvec Bi (10)

Equation (10) accounts automatically for the possibly different dimensions of the Bi. Writing (10)
in terms of the parameter vector θ gives

dvec A
dθT

=
p∑

i=1

[(
Ci−1

1

)T ⊗Cp
i+1

] dvec Bi

dθT
. (11)

where dvec Bi/dθ
T is the derivative of the matrix Bi with respect to the parameter vector θ,

evaluated at θi. Equation (11) sums the contributions of the derivatives of all of the phase-
specific matrices Bi with respect to θ, thus accounting for all the ways in which θ may affect the
demographic rates at each point in the cycle. As written, (11) gives the result of perturbing θ at
each point in the cycle. The effect of a phase-specific perturbation is easily obtained by summing
only over phases in which θi is modified.

Substituting (11) into the formula (5) gives the general expression for the sensitivity of ξ to
changes affecting any or all of the Bi:

dξ

dθT
=

dξ

dvec TA

(
p∑

i=1

[(
Ci−1

1

)T ⊗Cp
i+1

] dvec Bi

dθT

)
. (12)

The elasticity of ξ can be written as follows. Let εξ/εθT be the elasticity of ξ to θ; this elasticity
is the matrix

εξ

εθT
=
(
θj

ξi

dξi
dθj

)
. (13)

Because elasticities are logarithmic derivatives, they apply only when ξ > 0 and θ ≥ 0. Applying
this to (12) gives

εξ

εθT
= D(ξ)−1 dξ

dvec TA

(
p∑

i=1

[(
Ci−1

1

)T ⊗Cp
i+1

] dvec Bi

dθT

)
(14)

where D(x) is a diagonal matrix with x on the diagonal and zeros elsewhere.
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2.1 A simple harvest model

The projection matrix for a simple harvest model (e.g., Hauser et al. 2006) can be written

A = B (I−H) . (15)

The matrix B describes demography in the absence of harvest. The matrix H = D(h) is a harvest
matrix, where hi is the probability that an individual of stage i is harvested. Either B, H, or both
may be functions of a vector θ of parameters. Differentiating (15) and applying the vec operator
gives

dvec A
dθT

= − (Is ⊗B)
dvec H
dθT

+
[
(I−H)T ⊗ Is

] dvec B
dθT

. (16)

The diagonal matrix H can be written

H = Is ◦ (heT) (17)

where e is a vector of ones and ◦ denotes the Hadamard product. Differentiating H in (17) gives

dvec H = D (vec Is) (e⊗ Is) dh (18)

so that (16) becomes

dvec A
dθT

= − (Is ⊗B)D (vec Is) (e⊗ Is)
dh
dθT︸ ︷︷ ︸

perturbations of h

+
[
(I−H)T ⊗ Is

] dvec B
dθT︸ ︷︷ ︸

perturbations of B

. (19)

The conditional probability model (3) has the same form as the harvest model (15), so a
similar analysis applies to it as well. However, the conditional transition matrix G is column-
stochastic, because all loss of individuals is accounted for by Σ. Thus relevant perturbations must
be parameterized so that the stochasticity is preserved. For example, if G describes growth in the
standard size-classified model (Caswell 2001 Section 4.2), e.g.,

G =

 1− γ1 0 0
γ1 1− γ2 0
0 γ2 1− γ3

 (20)

then perturbations of the γi will preserve stochasticity of G. If G has no such convenient parame-
terization, then changes in the entries of G must be compensated for by changes elsewhere in the
same column (see Caswell 2001, Hill et al. 2004, and Theorem 4.5 of Caswell 2011c).

The harvest model (15) can be extended to describe harvest imposed at a specified phase within
a p-cycle. Suppose that harvest takes place between phase m and phase m+ 1, so that

A = Bp · · ·Bm+1 (I−H) Bm · · ·B1 (21)

(see Darwin and Williams 1964 for an example of just this kind of seasonal harvest model). Using
the same approach, it can be shown that

dvec A
dθT

= −
[
(Cm

1 )T ⊗Cp
m+1

] dvec H
dθT

+
[
Is1 ⊗Cp

m+1 (I−H)
] m∑

i=1

[(
Ci−1

1

)T ⊗Cm
i+1

] dvec Bi

dθT

+
[
((I−H) Cm

1 )T ⊗ Is1

] p∑
i=m+1

[(
Ci−1

m+1

)T ⊗Cp
i+1

] dvec Bi

dθT
(22)

The expression (18) can be substituted for dvec H in (22), and the resulting expression for dvec A/dθT

substituted into (5).
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3 Vec-permutation models

We consider individuals classified by stages (1, . . . , s) and locations (1, . . . , r). The population
dynamics are described as if the processes acted sequentially; e.g., as if individuals would first
survive and reproduce according to their demography, and then disperse among locations, and
then repeat. Thus the model is formally periodic.

We will describe the analysis in terms of stages (1, . . . , s) and locations (1, . . . , r). The state of
the population is given by a matrix

N =

 n11 · · · n1r
...

...
ns1 · · · nsr

 (23)

where nij is the number of individuals in stage i at location j. We convert N into a vector for
population projection using the vec operator:

n = vecN =



n11
...
ns1

...
n1r

...
nsr


(24)

Demography in location i is given by a s × s projection matrix Bi. Dispersal among locations by
individuals in stage j is described by a r × r matrix Mj . Define the block-diagonal matrices

B =

 B1 · · · 0
...

. . .
...

0 · · · Br

 (25)

=
r∑

i=1

(Es,i ⊗Bi) (26)

and

M =

 M1 · · · 0
...

. . .
...

0 · · · Ms

 (27)

=
s∑

j=1

(Er,j ⊗Mj) (28)

where Es,i is an s× s matrix containing a 1 in the (i, i) position and zeros elsewhere.
Population dynamics are described as alternating between transitions among stages and move-

ment among locations. The population is projected by

n(t+ 1) = KTMKB n(t) (29)
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(Hunter and Caswell 2005b). The matrix K is the vec-permutation matrix, or commutation matrix,
(Henderson and Searle 1981, Magnus and Neudecker 1979), which satisfies

vecN T = K vecN (30)

For the calculation of K, see Henderson and Searle (1981) or Hunter and Caswell (2005b).
The block-diagonal matrix B in (29) accounts for demographic change within locations, the

vec-permutation matrix K rearranges the resulting vector so that the block-diagonal matrix M can
move individuals among locations, and the matrix KT returns the resulting vector to its original
arrangement. Thus the projection matrix is

A = KTMKB. (31)

The dependence of A on the parameters θ can take place through Bi [θ], Mi [θ], or both.
To apply the general formula (5), we must calculate dA/dθT. Differentiating (31) gives

dA = KT (dM) KB + KTMK (dB) . (32)

Applying the vec operator gives

dvec A = (BTKT ⊗KT) dvec M + (Isp ⊗KTMK) dvec B (33)

Differentiating the block diagonal matrices (26) and (28) gives

dB =
r∑

i=1

(Es,i ⊗ dBi) (34)

dM =
s∑

j=1

(Er,j ⊗ dMj) (35)

Applying the vec operator to both sides of (34) and (35), and using Lemma 3 of Magnus and
Neudecker (1985) for the vec of a Kronecker product, gives

dvec B =
r∑

i=1

(Ir ⊗K⊗ Is) (vec Es,i ⊗ Is2) dvec Bi (36)

dvec M =
s∑

j=1

(Is ⊗KT ⊗ Ir) (vec Er,j ⊗ Ir2) dvec Mj (37)

Substituting (36) and (37) into the expression (33) for dvec A gives the final result

dvec A
dθT

= X1

s∑
j=1

(vec Er,j ⊗ Ir2)
dvec Mj

dθT︸ ︷︷ ︸
perturbations of the Mj

+ X2

r∑
i=1

(vec Es,i ⊗ Is2)
dvec Bi

dθT︸ ︷︷ ︸
perturbations of the Bi

(38)

where

X1 = (BTKT ⊗KT) (Is ⊗KT ⊗ Ir) (39)
X2 = (Isr ⊗KTMK) (Ip ⊗KT ⊗ Is) (40)

Note that X1 and X2 are constant matrices, and need be calculated only once. Although X1, X2,
and the Kronecker products appearing in the summations are large, they are also extremely sparse.
The sparse matrix capabilities in Matlab can take advantage of this fact.

Substituting (38) into (5) gives the sensitivity of an output variable ξ to changes in parameters
that perturb the Mj , the Bi, or both.
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4 Nonlinear periodic models and delayed density dependence

We focus here on the sensitivity of the population vector, or functions of the population vector.2

These sensitivities have been analyzed in time-invariant nonlinear models (Caswell 2008, 2009a),
but not for nonlinear models including periodic environmental variation.

In a periodic nonlinear model, each of the Bi in (2) may depend on density. Especially in
seasonal models, the vital rates in the matrix Bi may depend on densities not only at phase i, but
at previous phases within the cycle as well. For example, the seed production of fruiting plants in
the fall may reflect the density experienced by vegetative rosettes in the early spring (Shyu et al.
in prep.).

To develop a model including such delayed density dependence, define

ni(t) = population at season i in year t (41)

Starting at season 1, the dynamics are given by

n1(t+ 1) = Bpnp(t)
n2(t) = B1n1(t)

... (42)
np(t) = Bp−1np−1(t)

Density-dependence, in a general form, means that the matrices Bi may be functions of densities
over one cycle prior to season i:

B1 = B1 [n1(t),np(t− 1), . . . ,n2(t− 1)]
B2 = B2 [n2(t),n1(t),np(t− 1), . . . ,n3(t− 1)]

... (43)
Bp = Bp [np(t),np−1(t), . . . ,n1(t)]

A fixed point on the interannual time scale is a p-cycle on the seasonal scale, satisfying

n̂1 = Bp [n̂1, . . . , n̂p] n̂p

n̂2 = B1 [n̂1, . . . , n̂p] n̂1

... (44)
n̂p = Bp−1 [n̂1, . . . , n̂p] n̂p−1

A k-cycle on the interannual time scale is a kp-cycle on the seasonal time scale, the points of
which we number n̂1, . . . , n̂kp. The corresponding sequence of matrices, in which the annual cycle
B1, . . . ,Bp is repeated k times, is defined as B1, . . . ,Bkp. With this notation, (44) still holds, with
kp instead of p entries.

Differentiating (44) yields

dn̂i = (dBi−1) n̂i−1 + Bi−1 (dn̂i−1) i = 1, . . . , p (45)
2The other main focus of sensitivity analysis for nonlinear models is the invasion exponent in evolutionary applica-

tions. The invasion exponent is the dominant eigenvalue of the matrix A evaluated at equilibrium, or of the periodic
product of the matrices over a cycle. Because invasion is a linear problem (Metz et al. 1992), these evolutionary
calculations can use (12) directly.
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where the subscripts on n̂ and B are interpreted modulo p. Applying the vec operator to (45)
yields

dn̂i =
(
n̂T

i−1 ⊗ Is

)
dvec Bi−1 + Bi−1dn̂i−1. (46)

The sensitivity analysis of the cycle involves a set of block-structured matrices, the form of
which is easily generalized from the special case with p = 3. Assuming p = 3 and noting that B
depends on all the n̂i as well as on the parameter vector θ, the derivative of Bi−1 in (46) is

dvec Bi−1 =
∂vec Bi−1

∂nT
1

dn̂1 +
∂vec Bi−1

∂nT
2

dn̂2 +
∂vec Bi−1

∂nT
3

dn̂3 +
∂vec Bi−1

∂θT
dθ (47)

For notational convenience, define the matrices

Hi = (n̂T
i ⊗ Is) (48)

Substituting (47) into (46) produces the set of equations

dn̂1 = H3
∂vec B3

∂θT
dθ + H3

p∑
j=1

∂vec B3

∂nT
j

dn̂j + B3dn̂3

dn̂2 = H1
∂vec B1

∂θT
dθ + H1

p∑
j=1

∂vec B1

∂nT
j

dn̂j + B1dn̂1 (49)

dn̂1 = H2
∂vec B2

∂θT
dθ + H2

p∑
j=1

∂vec B2

∂nT
j

dn̂j + B2dn̂2

This set of equations can be reduced to a single equation by collecting all the points on the kp-cycle
into a single vector. Write an array (of dimension sp× k)

N =

yr. 1 yr. k
season 1 n̂1 · · · n̂1

...
...

...
season p n̂p · · · n̂p

(50)

Then write the vector (of dimension spk × 1)

N = vecN (51)

In terms of this vector, the set of equations (49) can be rewritten

dN
dθT

= [Iskp − B−HC]−1 HD. (52)

where H and B are the block-circulant matrices

H =

 0 0 H3

H1 0 0
0 H2 0

 (53)

B =

 0 0 B3

B1 0 0
0 B2 0

 , (54)
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and C and D are the block matrices

C =


∂vec B1

∂nT
1

· · · ∂vec B1

∂nT
3

...
. . .

...
∂vec B3

∂nT
1

. . .
∂vec B3

∂nT
3

 (55)

D =



∂vec B1

∂θT

∂vec B2

∂θT

∂vec B3

∂θT

 . (56)

All the derivatives are evaluated at n̂1, . . . , n̂3. This derivation follows that in Caswell (2008), but
with the addition of delayed density dependence.

4.1 Averages

The vector dN/dθT contains the sensitivities of all s stages at each of p seasons with the year (for a
fixed point on the annual time scale) or at each of kp seasons for a k-cycle on the annual time scale.
That may be too much information; it may be desirable to calculate the sensitivity of averages, or
other linear combinations, taken in various ways.

To write these averages, let bm be a m×1 vector of weights. For a simple average of m quantities,
each entry of bm is 1/m; for a weighted average, the entries of bm would be non-negative numbers
summing to 1. More generally, b may contain arbitrary weights, such as biomass, metabolic rate,
economic value, etc. (Caswell 2008). To calculate averages from N, we apply these vectors to N
and then apply the vec operator.

Given a fixed point on the annual time scale, averages can be calculated over stages (using a
vector bs), over seasons (using a vector bp), or both. The p× 1 vector of averages over stages is

avg. over stages = vec (bT
sN ) (57)

= (Ip ⊗ bT
s) N (58)

The s× 1 vector of averages over seasons is

avg. over seasons =
(
bT

p ⊗ Is

)
N (59)

The average over both seasons and stages (a scalar) is

avg. over stages and seasons =
(
bT

p ⊗ bT
s

)
N (60)

Because the average is a linear operator, the sensitivities of these averages are obtained by applying
the same weights to dN/dθT in (52):

sensitivity of avg. over stages = (Ip ⊗ bT
s)
dN
dθT

(61)

sensitivity of avg. over seasons =
(
bT

p ⊗ Is

) dN
dθT

(62)

sensitivity of avg. over both =
(
bT

p ⊗ bT
s

)
N (63)
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Table 2: Calculation of averages of attractors of nonlinear periodic matrix population models. The
upper half of the table shows averages over stages and over seasons when the dynamics are a fixed
point on the inter-annual time scale, and thus a p-cycle on the seasonal time scale. The lower half
of the table shows averages over all combinations of stages, seasons, and years, when the dynamics
are a k-cycle on the inter-annual time scale, and thus a kp-cycle on the seasonal time scale.

Average over: Formula Vectors Dimension

stages (Ip ⊗ bT
s) N 1 p× 1

seasons
(
bT

p ⊗ Is

)
N 1 s× 1

seasons and stages
(
bT

p ⊗ bs

)
N 1 1× 1

stages (Ik ⊗ Ip ⊗ bT
s) N 1 kp× 1

seasons
(
Ik ⊗ bT

p ⊗ Is

)
N k s× 1

years (bk ⊗ Ip ⊗ Is) N p s× 1

seasons and years
(
bT

k ⊗ bT
p ⊗ Is

)
N 1 s× 1

seasons and stages
(
Ik ⊗ bT

p ⊗ bT
s

)
N 1 k × 1

years and stages (bT
k ⊗ Ip ⊗ bT

s) N 1 p× 1

stages, seasons, years
(
bT

k ⊗ bT
p ⊗ bT

s

)
N 1 1× 1

When the dynamics produce a k-cycle on the annual time scale, averages can be calculated
over any desired combination of stages, seasons, and years. Table 2 gives the resulting expressions
for the averages. As in the case of equations (61) and (62), the sensitivities of these averages to
parameters are obtained by applying the same weights to dN/dθT.

4.2 A nonlinear example

As an example of the calculations for nonlinear systems, imagine an organism with two stages:
immature juveniles and reproducing adults. Suppose that the year contains two seasons: a benign,
reproduction-heavy Season 1 and a harsh, mortality-heavy Season 2. The life cycle graph is shown
in Figure 2. Adults in Season 1 all survive to Season 2 and give birth to new juveniles with per-
capita fertility f , which depends on adult density in Season 1 according to f [n1] = ae−bn2 , where a
and b are the maximum fertility and the strength of density-dependence, respectively, and n2 is the
adult density in Season 1. In the harsher Season 2, juveniles and adults survive with probabilities
sj and sa. A juvenile that survives to Season 1 matures into an adult.

This life cycle produces seasonal transition matrices B1 and B2:

B1[n1] =
(

0 f [n1]
0 1

)
(64)

B2 =
(

0 0
sj sa

)
(65)

and the nonlinear periodic model

n1(t+ 1) = B2n2(t)

13



J A

J A

J A

Season 1

Season 2

Season 1

SJ

f(n)

Sa

1

Figure 2: A periodic life cycle graph for a simple two-stage, two-season nonlinear model. J and A
denote juveniles and adults, respectively.
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Figure 3: A bifurcation diagram on the seasonal time scale for the two-season, two-stage model
of Figure 2. Total densities are plotted for Season 1 (•) and 2 (+). Parameters: a = 20, b = 1,
sj = 0.5; sa varied from 0 to 1.

n2(t) = B1 [n1(t)] n1(t) (66)

Figure 3 is a bifurcation diagram for the system (66) in response to changes in adult survival sa.
When adults are long-lived (sa & 0.22) there is a 2-cycle on the seasonal scale, corresponding to a

14



fixed point on the annual time scale, satisfying

n̂1 = B2n̂2 (67)
n̂2 = B1[n̂1]n̂1 (68)

At sa ≈ 0.22 this 2-cycle bifurcates to a 4-cycle on the seasonal time scale, corresponding to a
2-cycle on the annual scale.

To derive the block matrices C and D in equations (55) and (56), we define the parameter vector
as

θ =
(
sj sa a b

)T
. (69)

The derivative matrices are

dvec B1

dθT
=


0 0 0 0
0 0 0 0
0 0 e−bn̂2 −an̂2e

−bn̂2

0 0 0 0

 (70)

dvec B2

dθT
=


0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

 (71)

dvec B1

dnT
=


0 0
0 0
0 −abe−bn̂2

0 0

 (72)

dvec B2

dnT
= 0 (dimension 4× 2) (73)

We calculate the sensitivities of the equilibrium population at each phase of the cycle using
equation (52) with sa = 0.4 (a 2-cycle on the seasonal time scale; see Figure 3) and with sa = 0.1
(a 4-cycle on the seasonal time scale). The results, and the sensitivities of several averages, are
shown in Figure 4.

At the seasonal 2-cycle (annual fixed point), increases in sj or sa increase density in Season 1
and reduce density in Season 2, and have little effect on the density averaged over seasons. The
maximum fertility level a has little effect at either season, and the density-dependent parameter b
has large negative effects throughout.

At the 4-point seasonal cycle (2-cycle on the annual time scale), the patterns are more compli-
cated. We describe them in terms of the kp = 4 seasons in the cycle. The maximum fertility a
has little effect at any point. The survival probabilities sj and sa have effects that are opposite in
sign: an increase in sj increases the density in seasons 1 and 4, and reduces it in seasons 2 and 3.
An increase in sa has the opposite effect. Averaged over years, both sa and sj increase density in
season 1 and reduce it in season 2, thus increasing the amplitude of the oscillation. Averaged over
seasons, sa and sj have opposite effects. When averaged over stages, seasons, and years, the effects
of sa cancel each other out, and only sj and b have appreciable effects.

Even in this simple example, it is clear that parameter changes can have effects that differ
among seasons and years. A set of Matlab scripts to carry out these calculations is provided in
an Online Supplement.
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Figure 4: Sensitivities of equilibrium total population size in Seasons 1 and 2, as well as the annual
population average, to the demographic parameters sj , sa, a, and b. Left: sensitivities when sa

= 0.4 (seasonal 2-cycle, annual equilbrium). Right: sensitivities when sj = 0.1 (seasonal 4-cycle,
annual 2-cycle).

5 An application: LTRE Analysis

LTRE (Life Table Response Experiment) analysis provides a first-order decomposition of effects
on a dependent variable, such as λ, into contributions from differences in the parameters (Caswell
1989, 2001 Chapter 10). In the case of a periodic model, the effects on the dependent variable result
from differences in each parameter at each phase in the cycle (Smith et al. 2005). The perturbation
analysis presented here makes it possible to decompose differences in the dependent variable into
contributions from the differences in each parameter.

Suppose that ξ is a m × 1 dependent variable (scalar or vector-valued), a function of a vector
of parameters θ that takes on values θ1, . . . ,θp over the cycle. Use superscripts to denote two
treatments, which produce results ξ(1) and ξ(2):

θ
(1)
1 , . . . ,θ(1)

p → ξ(1) (74)

θ
(2)
1 , . . . ,θ(2)

p → ξ(2) (75)

To first order, the treatment effect on ξ is

ξ(2) − ξ(1) ≈
p∑

i=1

dξ

dθT
i

(
θ

(2)
i − θ

(1)
i

)
(76)

The ith term in the summation in (76) is the total contribution, over all of the parameters in
θ, of parameter differences in phase i of the cycle. This can be expanded to form a matrix of
contributions, Ri, whose (k, j) entry is the contribution of the jth entry in the parameter vector
θ, at phase i, to the effect on the kth entry of the dependent variable vector ξ:

Ri =
dξ

dθT
i

◦
[
e
(
θ(2) − θ(1)

)T]
i = 1, . . . , p. (77)
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Table 3: The major results of this paper; for each calculation, the equation number for the sensitivity
is given.

Model Sensitivity
Linear periodic model (12)
Harvest model (19)
Seasonal harvest model (22)
Vec-permutation model (38)
Nonlinear model (52)
Averages over cycles Table 2
LTRE contributions (77)

Here, ◦ denotes the Hadamard product and e is a m× 1 vector of ones. If ξ is a scalar, then Rk is
a row vector of contributions. The derivative is evaluated at the average of θ(1) and θ(2).

The contribution matrix (77) requires dξ/dθT
i , that is, the derivative of ξ to the parameter at

phase i of the cycle. In the linear model (2), this is given by the ith term in the summation in (12).
In the case of the nonlinear model (42), the derivative is obtained from equation (52) by setting all
blocks of D, except those corresponding to phase i, to zero.

6 Discussion

The distinguishing feature of periodic models is that the dynamics over a projection interval are
given by a periodic product of matrices. The periodic product may reflect the existence of multiple
timescales (e.g., seasonal and annual), or the operation of multiple processes (e.g., demography
and harvest), or express conditional probabilities, or arise from classifying individuals by multiple
criteria. The sensitivity analysis of periodic models must account for the chain of causation shown
in Figure 1. The underlying parameters affect the vital rates at each phase of the cycle, but the
output variable ξ is calculated from the entire periodic product. Differentiating ξ with respect to
θ requires tracing all these chains of influence. Matrix calculus makes this easy to do, starting
with a simple chain rule expression [see equation (5)] and then using the periodic form to calculate
dvec A/dθT, as in equation (11) for linear models, (22) for seasonal harvest models, and (38) for
vec-permutation models. Sensitivity analysis of nonlinear models is equally direct, with equation
(52) combining all the points on the seasonal or interannual cycles into a single vector.

An overview of the results we have obtained here is given in Table 3.
Analytical results such as we present here are always preferable, both theoretically and practi-

cally, to numerical approximations. It is even better to have both. This is particularly true when
the analytical results are easily computable, and is especially true when applied to differentiation,
which is a notoriously ill-behaved problem. The naive numerical approach, based on small pertur-
bations of each parameter in turn, is “almost guaranteed to produce inaccurate results” (Press et
al. 1992, p. 185). It is subject to truncation error (caused by making the perturbation too large)
and roundoff error (caused by making the perturbation too small). In some applications these
errors will be unimportant, but in others they can be crucial (c.f. Hunter and Caswell (2009) for
an example in mark-recapture analysis).

In management applications, the timing of interventions can be as much a part of the strategy
as the choice of stages to target. The sensitivity formulae derived here explicitly account for
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perturbations at any point in the periodic product. This permits investigation of season-specific
management strategies (e.g., Shyu et al. in prep.). Combining seasonality and the vec-permutation
model would permit the analysis of strategies that are both season and location-specific. Brooks
and Lebreton (2001), for example, carried out a detailed analysis of control strategies for a gull
metapopulation. They developed optimal stage- and site-specific harvest strategies using sensitivity
analysis of the population growth rate λ. It would be interesting to develop those calculations using
the periodic sensitivity analysis of the corresponding vec-permutation model.
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Lebreton, J.-D. and R. Pradel. 2002. Multistate recapture models: modelling incomplete individual

histories. Journal of Applied Statistics 29:353–369.
Lesnoff, M. 1999. Dynamics of a sheep population in a Sahelian area (Ndiagne district in Senegal):

a periodic matrix model. Agricultural Systems. 61:207–221.
Lesnoff, M., R. Lancelot, E. Tillard, and I. R. Dohoo. 2000. A steady-state approach of benefit-cost

analysis with a periodic Leslie-matrix model: Presentation and application to the evaluation of
a sheep-diseases preventive scheme in Kolda, Senegal. Preventive Veterinary Medicine: 46:113–
128.

Lesnoff, M., P. Ezanno, and H. Caswell. 2003. Sensitivity analysis in periodic matrix models: a
postscript to Caswell and Trevisan. Mathematical and Computer Modelling 37: 945–948.

Lima, M., N. C. Stenseth, H. Leirs, and F. M. Jaksic. 2003. Population dynamics of small
mammals in semi-arid regions: a comparative study of demographic variability in two rodent
species. Proceedings of the Royal Society of London B 270:1997–2007.

Lima, M., N. C. Stenseth, N. G. Yoccoz, and F. M. Jaksic. 2001. Demography and population
dynamics of the mouse opossum (Thylamys elegans) in semi-arid Chile: seasonality, feedback
structure and climate. Proceedings of the Royal Society B 268:2053–2064.

MacArthur, R. H. 1968. Selection for life tables in periodic environments. The American Naturalist
102:381–383.

Magnus, J.R. and H. Neudecker. 1979. The commutation matrix: some properties and applications.
Annals of Statistics 7:381–394.

Magnus, J. R. and H. Neudecker. 1985. Matrix differential calculus with applications to simple,
Hadamard, and Kronecker products. Journal of Mathematical Psychology 29:474–492.

Mandujano, M. C., C. Montana, M. Franco, J. Golubov, and A. Flores-Martinez. 2001. Integration
of demographic annual variability in a clonal desert cactus. Ecology 82:344–359.

Mertens S. K., F. van den Bosch, and J. A. P. Heesterbeek. 2002. Weed populations and crop rota-
tions: Exploring dynamics of a structured periodic system. Ecological Applications. 12:1125–
1141.

Metz, J.A.J., R.M. Nisbet, and S.A.H. Geritz. 1992. How should we define ‘fitness’ for general
ecological scenarios? Trends in Ecology and Evolution 7:198–202.

Mondragon, D., R. Duran, I. Ramirez, and T. Valverde. 2004. Temporal variation in the demog-
raphy of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatan Peninsula,
Mexico. Journal of Tropical Ecology 20:189–200.

Ozgul A, Oli MK, Armitage KB, Blumstein DT, van Vuren DH (2009) Influence of local demography
on asymptotic and transient dynamics of a yellow-bellied marmot metapopulation. American
Naturalist 173:517–530.

Pagel, J., K. Fritzsch, R. Biedermann, and B. Schroeder. 2008. Annual plants under cyclic dis-
turbance regime: better understanding through model aggregation. Ecological Applications
18:2000–2015.

20



Pascarella, J. B., and C. C. Horvitz. 1998. Hurricane disturbance and the population dynamics of
a tropical understory shrub: mega-matrix elasticity analysis. Ecology 79:547–563.

Pico, F. X., H. de Kroon, and J. Retana. 2002. An extended flowering and fruiting season has few
demographic effects in a Mediterranean perennial herb. Ecology 83:1991–2004.

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical recipes in
C: the art of scientific computing. Second Edition. Cambridge University Press, Cambridge,
United Kingdom.

Prevey, J. S., M. J. Germino, and N. J. Huntly. 2010. Loss of foundation species increases popu-
lation growth of exotic forbs in sagebrush steppe. Ecological Applications 20:1890–1902.

Ramula, S. 2008. Responses to the timing of damage in an annual herb: Fitness components versus
population performance. Basic and Applied Ecology 9:233–242.

Ramula, S. and Y. M. Buckley. 2010. Management recommendations for short-lived weeds depend
on model structure and explicit characterization of density dependence. Methods in Ecology
and Evolution 1: 158–167.

Ripley, B. J., J. Holtz and M. A. Simovich. 2004. Cyst bank life-history model for a fairy shrimp
from ephemeral ponds. Freshwater Biology 49:221–231.

Rydgren, K., H. de Kroon, R. H. Okland, and J. van Groenendael. 2001. Effects of fine-scale distur-
bances on the demography and population dynamics of the clonal moss Hylocomium splendens.
Journal of Ecology 89:395–405.

Sarukhan, J. and M. Gadgil. 1974. Studies on plant demography: Ranunculus repens L., R. bulbo-
sus L., and R. acris L. III. A mathematical model incorporating multiple modes of reproduction.
Journal of Ecology 62:921–936.

Schleuning, M., V. Huaman, and D. Matthies. 2008. Flooding and canopy dynamics shape the
demography of a clonal Amazon understorey herb. Journal of Ecology. 96: 1045–1055.

Shyu, E., E.A. Pardini, T.M. Knight, and H. Caswell. (in prep.) A seasonal, density-dependent,
stage-structured harvest model for the management of the invasive weed garlic mustard (Alliaria
petiolata ).

Sinha A. and S. Brault. 2005. Assessing sustainability of nontimber forest product extractions:
how fire affects sustainability. Biodiversity and Conservation 14: 3537–3563.

Skellam, J. G. 1966. Seasonal periodicity in theoretical population ecology. Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability 4:179–205.

Smith, M., H. Caswell, and P. Mettler-Cherry. 2005. Stochastic flood and precipitation regimes
and the population dynamics of a threatened floodplain plant. Ecological Applications 15:1036–
1052.

Spencer, M. and B. L. McGee. 2001. A field-based population model for the sediment toxicity test
organism Leptocheirus plumulosus: I. Model development. Marine Environmental Research
51:327–345.

Steets, J. A., T. M. Knight, and T. L. Ashman. 2007. The interactive effects of herbivory and mixed
mating for the population dynamics of Impatiens capensis. American Naturalist 170:113-127.

Stokes, K., A. Allchin, J. Bullock, and A. Watkinson. 2004. Population responses of Ulex shrubs
to fire in a lowland heath community. Journal of Vegetation Science 15:505–514.

Strasser, C.A., M.G. Neubert, H. Caswell, and C.M. Hunter. 2010. Contributions of high- and
low-quality patches to a metapopulation with stochastic disturbance. Theoretical Ecology doi
10.1007/s12080-010-0106-9.

van den Berg, F., C. A. Gilligan, J. C. Gerdessen, L. A. H. Gregoire, and F. van den Bosch.
2010. Optimal weed management in crop rotations: incorporating economics is crucial. Weed
Research, 50:413–424.

21



Vavrek, M. C., J. B. McGraw, and H. S. Yang. 1997. Within-population variation in demography of
Taraxacum officinale: Season- and size-dependent survival, growth and reproduction. Ecology
85:2098–2107.

Vega, E. and C. Montana. 2004. Spatio-temporal variation in the demography of a bunch grass in
a patchy semiarid environment. Plant Ecology 175:107–120.

Verdy, A. and H. Caswell. 2008. Sensitivity analysis of reactive ecological dynamics. Bulletin of
Mathematical Biology 70:1634–1659.

Westerman, P., M. Liebman, F. D. Menalled, A. H. Heggenstaller, R. G. Hartzler, and P. M.
Dixon. 2005. Are many little hammers effective? - Velvetleaf (Abutilon theophrasti) population
dynamics in two- and four-year crop rotation systems. 53:382–392.

Wittmer, H. U., R. A. Powell, and C. M. King. 2007. Understanding contributions of cohort effects
to growth rates of fluctuating populations. Journal of Animal Ecology 76:946–956.

Yoccoz, N. G., K. Nakata, N. C. Stenseth, and T. Saitoh. 1998. The demography of Clethrionomys
rufocanus: from mathematical and statistical models to further field studies. Researches on
Population Ecology 40:107–121.

22



A A brief survey of matrix calculus

This appendix presents a brief survey of some of the basic manipulations involved in matrix calculus.
The material is modified from Caswell (2008) under the terms of a Creative Commons Attribution
Non-Commercial License. The paper in which the material originally appeared is available freely
online at: http://www.demographic-research.org/volumes/vol18/3/

Matrix calculus permits the consistent differentiation of scalar-, vector-, and matrix-valued
functions of scalar, vector, or matrix arguments. This appendix presents a brief statement of some
essential results. More detail can be found in Caswell (2007, 2009, Klepac and Caswell 2010). A
good introductory mathematical treatment is found in Abadir and Magnus (2005), and the most
detailed presentation is the book of Magnus and Neudecker (1988).

There exist several conventions for matrix calculus, differing in their arrangements of the matrix
and vector entries. The best is that of Magnus and Neudecker (1985, 1988).

If x and y are scalars, the derivative of y with respect to x is the familiar derivative dy/dx. If
y is a n× 1 vector and x a scalar, the derivative of y with respect to x is the n× 1 vector

dy
dx

=


dy1

dx
...
dyn

dx

 . (78)

If y is a scalar and x is a m× 1 vector, the derivative of y with respect to x is the 1×m gradient
vector

dy

dxT
=
(

∂y

∂x1
· · · ∂y

∂xm

)
(79)

Note the orientation of dy/dx as a column vector and dy/dxT as a row vector; this reappears in
the derivative of a vector with respect to another vector.

If y is a n× 1 vector and x a m× 1 vector, the derivative of y with respect to x is the n×m
Jacobian matrix whose (i, j) entry is

dy
dxT

=
(

dyi

dxj

)
. (80)

Note that equations (78) and (79) are special cases where m = 1 or n = 1, respectively, and that if
m = n = 1 (i.e., the vectors are actually scalars) then (80) reduces to the usual scalar derivative.

Derivatives involving matrices are written by transforming the matrices into vectors using the
vec operator (which stacks the columns of the matrix into a column vector), and then applying
the rules for vector differentiation. Thus, the derivative of the m× n matrix Y with respect to the
p× q matrix X is the mn× pq matrix

dvec Y

dvec TX
. (81)

For notational convenience, we will write vec TX for (vec X)T.
These definitions (unlike some alternatives; see Magnus and Neudecker 1985) lead to the familiar

chain rule. If Y is a function of X and X is a function of Z, then

dvec Y
dvec TZ

=
dvec Y
dvec TX

dvec X
dvec TZ

. (82)
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The derivatives of matrices are constructed by forming the differentials of the expressions in-
volving the matrices. The differential of a matrix (or vector) is the matrix (or vector) containing
the differentials of the elements; i.e.,

dX =
(
dxij

)
. (83)

The key to the construction is the result that if, for vectors x and y and some matrix Q, it can be
shown that

dy = Qdx (84)

then
dy
dxT

= Q. (85)

(the “first identification theorem” of Magnus and Neudecker (1985)).
The combination of the chain rule and the identification theorem permits more complicated

expressions involving differentials to be turned into derivatives with respect to an arbitrary vector,
say u. If

dy = Qdx + Rdz (86)

then
dy
duT

= Q
dx
duT

+ R
dz
duT

(87)

for any u.
The construction of the matrices makes extensive use the Kronecker product, defined as

A⊗B =

 a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

 . (88)

The vec operator and the Kronecker product are related (Roth 1934); if

Y = ABC (89)

then
vec Y = (CT ⊗A) vec B. (90)

Thus the typical procedure for obtaining derivatives is

1. write a matrix expression involving the output variable,

2. take differentials of the expression,

3. apply the vec operator,

4. use Roth’s theorem to an expression like (84) or (86), and

5. apply the First Identification Theorem to obtain the desired derivatives.

The chain rule can then be used to extend the result to obtain derivatives with respect to other
variables.
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