7 research outputs found

    Implications of copy number variation in people with chromosomal abnormalities: potential for greater variation in copy number state may contribute to variability of phenotype

    Get PDF
    Copy number variation is common in the human genome with many regions, overlapping thousands of genes, now known to be deleted or amplified. Aneuploidies and other forms of chromosomal imbalance have a wide range of adverse phenotypes and are a common cause of birth defects resulting in significant morbidity and mortality. “Normal” copy number variants (CNVs) embedded within the regions of chromosome imbalance may affect the clinical outcomes by altering the local copy number of important genes or regulatory regions: this could alleviate or exacerbate certain phenotypes. In this way CNVs may contribute to the clinical variability seen in many disorders caused by chromosomal abnormalities, such as the congenital heart defects (CHD) seen in ~40% of Down’s syndrome (DS) patients. Investigation of CNVs may therefore help to pinpoint critical genes or regulatory elements, elucidating the molecular mechanisms underlying these conditions, also shedding light on the aetiology of such phenotypes in people without major chromosome imbalances, and ultimately leading to their improved detection and treatment

    New horizons for molecular genetics diagnostic and research in autism spectrum disorder

    No full text
    Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, and complex pervasive neurodevelopmental disorder (PND) characterized by distinctive abnormalities of human cognitive functions, social interaction, and speech development.Nowadays, several genetic changes including chromosome abnormalities, genetic variations, transcriptional epigenetics, and noncoding RNA have been identified in ASD. However, the association between these genetic modifications and ASDs has not been confirmed yet.The aim of this review is to summarize the key findings in ASD from genetic viewpoint that have been identified from the last few decades of genetic and molecular research

    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

    Get PDF
    Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera–electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray–emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos

    CTA contributions to the 33rd International Cosmic Ray Conference (ICRC2013)

    Full text link
    Compilation of CTA contributions to the proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), which took place in 2-9 July, 2013, in Rio de Janeiro, BrazilComment: Index of CTA conference proceedings at the ICRC2013, Rio de Janeiro (Brazil). v1: placeholder with no arXiv links yet, to be replaced once individual contributions have been all submitted. v2: final with arXiv links to all CTA contributions and full author lis
    corecore