5 research outputs found

    Imaging features of double aortic arch shown by multidetector computed tomography angiography

    No full text
    We present a three-dimensional reconstructed image of vascular ring in a 2.5-month-old patient, which was obtained using multidetector computed tomography (MDCT). MDCT angiography made an accurate diagnosis of this life-threatening, but correctable, anomaly in an infant with a stridor, repeated respiratory infections and episodes of apnea

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore