73 research outputs found

    Development and Airworthiness Certification of the Ti6Al4V Inlet Casing Inner Forging

    Get PDF
    The inlet casing inner has manufactured using Ti-6Al-4V alloy through a closed die-forging route. It undergoes cyclic loads in addition to operating in extreme conditions in high-temperature environments. The demanding mission requirement of these engines necessitates the inlet casing inner to be flawless throughout its life cycle while retaining its structural integrity. It makes the qualification for airworthiness of the casing, a daunting task. In addition, the qualification tests also help to evaluate the design and manufacturing processes (closed die forging) of the inlet casing inner. The tests also provide data for further improvement of the inlet casing inner in terms of strength and fatigue life. It helps to ensure that the inlet casing inner will be able to perform as expected throughout its operational life. All the batch and consolidated test results comply with the relevant ASTM, MIL standards, and test schedule requirements

    Effect of Life-Style Modification Intervention Programme on Bone Mineral Density among Postmenopausal Women with Osteoporosis

    Get PDF
    Objectives: Osteoporosis is one of the major public health problems worldwide among postmenopausal osteoporotic women. Lifestyle modification interventions along with pharmacotherapy helps to revert the bone loss and prevent the complications. Methods: A randomized controlled trial was conducted at Kasturba Hospital, Manipal from January 2019 to December 2021 among postmenopausal women with osteoporosis. The postmenopausal women who attended the osteoporosis clinic and were within the age group of 45-65 years, could speak and understand English or Kannada, and whose Bone Mineral Density (BMD) score was between -1 and -3 were included for the study. The total sample size of the study was 120 with 60 in each of the experimental and control group. After obtaining the informed consent, stratified block randomization method was used to allocate the participants to intervention and control group. The BMD was monitored by the portable ultrasound densitometer by a technician at the outpatient departments. The baseline information was collected by a structured demographic questionnaire. Intervention group participants received Lifestyle Modification Intervention Program (LMIP) whereas control group received the standard regular care by the physician.  Follow up was done at three and six months. Results: The results revealed that the increase in the BMD median score among the experimental group was from -2.2 [(-2.5, -1.8)] to -1.5 [(-1.8, -0.65)] where as in the control group it was from -2.3 [(-2.6, -1.9)] to -2.0 [(-2.4, -1.5)].  The increase in the median score of the experimental group (0.7) was higher than in the control group (0.3). The results of Mann Whitey U test showed a statistical significance between the intervention and control groups in the post test after 6 months (U =.505.5, p<0.05). Wilcoxon signed rank test showed the significant change in both the intervention and control groups from pre-test to post-test I (3 months) and Post-test II (6 months) (p<0.001). Conclusion: The lifestyle modification intervention was found to be effective in improving the bone health status of postmenopausal women. Hence it is very important to integrate in regular therapy. Keywords: LMIP, postmenopausal women, bone health status, bone mineral density

    QTL analysis and marker assisted selection for improvement in grain protein content and pre-harvest sprouting tolerance in bread wheat

    Get PDF
    With the ever expanding possibilities to build supramotecutar structures, chemists are challenged to mimic nature including the construction of artificial cells or function thereof. Within the field of immunology, effective immunotherapy critically depends on efficient production of antigen-specific cytotoxic T-cells. Herein lies an opportunity for chemists to design and synthesize so-called artificial antigen presenting cells (aAPCs) that can promote T-cell activation and their subsequent expansion. In this review we discuss the current status of aAPC development, also focusing on developments in nanoscience which might improve future designs. As synthetic mimics of natural antigen-presenting cells, aAPCs encompass three basic signals required for T-cell activation: MHC-antigen complexes, costimulatory molecules and soluble immune modulating compounds. Both spatial and temporal organization of these signals during aAPC/T-cell contact is important for efficient T-cell activation. We discuss how signals have been incorporated in several aAPC designs, but also how physical properties such as size and shape are essential for targeting the aAPCs to T-cell rich areas in vivo

    Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity

    Get PDF
    The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum

    Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Get PDF
    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment

    Cardiovascular and metabolic influences of fetal smoke exposure

    Get PDF
    Many epidemiological studies showed associations of low birth weight with cardiovascular disease, type 2 diabetes and obesity. The associations seem to be consistent and stronger among subjects with a postnatal catch up growth. It has been suggested that developmental changes in response to adverse fetal exposures might lead to changes in the fetal anatomy and physiology. These adaptations may be beneficial for short term, but may lead to common diseases in adulthood. Maternal smoking during pregnancy is one of the most important adverse fetal exposures in Western countries, and is known to be associated with a 150–200 g lower birth weight. An accumulating body of evidence suggests that maternal smoking during pregnancy might be involved in pathways leading to both low birth weight and common diseases, including cardiovascular disease, type 2 diabetes and obesity, in adulthood. In this review, we discuss epidemiological studies focused on the associations of maternal smoking with fetal growth and development and cardiovascular and metabolic disease in later life. We also discuss potential biological mechanisms, and challenges for future epidemiological studies

    Sequencing of high-complexity DNA pools for identification of nucleotide and structural variants in regions associated with complex traits

    Get PDF
    We have used targeted genomic sequencing of high-complexity DNA pools based on long-range PCR and deep DNA sequencing by the SOLiD technology. The method was used for sequencing of 286 kb from four chromosomal regions with quantitative trait loci (QTL) influencing blood plasma lipid and uric acid levels in DNA pools of 500 individuals from each of five European populations. The method shows very good precision in estimating allele frequencies as compared with individual genotyping of SNPs (r(2) = 0.95, P < 10(-16)). Validation shows that the method is able to identify novel SNPs and estimate their frequency in high-complexity DNA pools. In our five populations, 17% of all SNPs and 61% of structural variants are not available in the public databases. A large fraction of the novel variants show a limited geographic distribution, with 62% of the novel SNPs and 59% of novel structural variants being detected in only one of the populations. The large number of population-specific novel SNPs underscores the need for comprehensive sequencing of local populations in order to identify the causal variants of human traits

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    On stability of NiTi wire during thermo-mechanical cycling

    Get PDF
    The use of NiTi wire as thermal actuator involves repeated thermal cycling through the transformation range under a constant or fluctuating load. The stability of the material under such conditions has been a concern for the past many years. Experimental results show that for a given alloy composition, the repetitive functional behaviour of NiTi wire is largely dependent on the processing schedule/parameters and the stress–strain regime of thermo-mechanical cycling (TMC). Among the various processing parameters,retained cold work in the material and the shape memory annealing temperature/time have significant influence. It has been shown in the present study that for a stable functional behaviour, the material needs to be tailored through judicious selection of these parameters. Study also shows that, after processing, the material requires an additional stabilization treatment for ensuring minimal variation in the repetitive functional response upon TMC
    corecore