222 research outputs found

    Dipeptidyl Peptidase IV Inhibition With MK0431 Improves Islet Graft Survival in Diabetic NOD Mice Partially via T-Cell Modulation

    Get PDF
    OBJECTIVE—The endopeptidase dipeptidyl peptidase-IV (DPP-IV) has been shown to NH2-terminally truncate incretin hormones, glucose-dependent insulinotropic polypeptide, and glucagon-like peptide-1, thus ablating their ability to potentiate glucose-stimulated insulin secretion. Increasing the circulating levels of incretins through administration of DPP-IV inhibitors has therefore been introduced as a therapeutic approach for the treatment of type 2 diabetes. DPP-IV inhibitor treatment has also been shown to preserve islet mass in rodent models of type 1 diabetes. The current study was initiated to define the effects of the DPP-IV inhibitor sitagliptin (MK0431) on transplanted islet survival in nonobese diabetic (NOD) mice, an autoimmune type 1 diabetes model

    Cross-Talk Between Interferon-γ and Hedgehog Signaling Regulates Adipogenesis

    Get PDF
    OBJECTIVE: T cells and level of the cytokine interferon-γ (IFN-γ) are increased in adipose tissue in obesity. Hedgehog (Hh) signaling has been shown to potently inhibit white adipocyte differentiation. In light of recent findings in neurons that IFN-γ and Hh signaling cross-talk, we examined their potential interaction in the context of adipogenesis. RESEARCH DESIGN AND METHODS: We used Hh reporter cells, cell lines, and primary adipocyte differentiation models to explore costimulation of IFN-γ and Hh signaling. Genetic dissection using Ifngr1<sup>-/-</sup> and Stat1<sup>-/-</sup> mouse embryonic fibroblasts, and ultimately, anti-IFN-γ neutralization and expression profiling in obese mice and humans, respectively, were used to place the findings into the in vivo context. RESULTS: T-cell supernatants directly inhibited hedgehog signaling in reporter and 3T3-L1 cells. Intriguingly, using blocking antibodies, Ifngr1<sup>-/-</sup> and Stat1<sup>-/-</sup> cells, and simultaneous activation of Hh and IFN-γ signaling, we showed that IFN-γ directly suppresses Hh stimulation, thus rescuing adipogenesis. We confirmed our findings using primary mouse and primary human (pre)adipocytes. Importantly, robust opposing signals for Hh and T-cell pathways in obese human adipose expression profiles and IFN-γ depletion in mice identify the system as intact in adipose tissue in vivo. CONCLUSIONS: These results identify a novel antagonistic cross-talk between IFN-γ and Hh signaling in white adipose tissue and demonstrate IFN-γ as a potent inhibitor of Hh signaling

    Paternal Diet Defines Offspring Chromatin State and Intergenerational Obesity

    Get PDF
    The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution

    MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption

    Get PDF
    Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A.1.1 contains a macrodomain able to bind NAD+ derived metabolites. Here, we report that macroH2A.1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing. Importantly, myotubes lacking macroH2A.1.1 display a defect in mitochondrial respiratory capacity. We find that the metabolite-interacting macrodomain is essential for sustaining optimal mitochondrial function, but dispensable for gene regulation. Through direct binding, macroH2A.1.1 inhibits basal poly-ADP ribose polymerase 1 activity and thus reduces nuclear NAD+ consumption. Consequentially, accumulation of the NAD+ precursor NMN allows the maintenance of mitochondrial NAD+ pools critical for respiration. Our data indicate that macroH2A.1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD+ consumption and establishing a buffer of NAD+ precursors in differentiated cells

    Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity.

    Get PDF
    This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.cell.2015.12.025More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.This work was supported by funding from the Max-Planck Society, ERC (ERC-StG-281641), DFG (SFB992 “MedEp”; SFB 1052 “ObesityMechanisms”), EU_FP7 (NoE ”Epigenesys”; “Beta-JUDO” n° 279153), BMBF (DEEP), MRC (Metabolic Disease Unit - APC, SOR, GSHY, MRC_MC_UU_12012/1), Wellcome Trust (SOR, 095515/Z/11/Z) and the German Research Council (DFG) for the Clinical Research Center "Obesity Mechanisms" CRC1052/1 C05 and the Federal Ministry of Education and Research, Germany, FKZ, 01EO1001 (Integrated Research and Treatment Center (IFB) Adiposity Diseases

    Linagliptin Improves Insulin Sensitivity and Hepatic Steatosis in Diet-Induced Obesity

    Get PDF
    Linagliptin (tradjenta™) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3–4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67–89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (–16.5% to –20.3%; P<0.01) or 30 mg/kg/day (–14.5% to –26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic–hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity

    Identification of New Genes Involved in Human Adipogenesis and Fat Storage

    Get PDF
    Since the worldwide increase in obesity represents a growing challenge for health care systems, new approaches are needed to effectively treat obesity and its associated diseases. One prerequisite for advances in this field is the identification of genes involved in adipogenesis and/or lipid storage. To provide a systematic analysis of genes that regulate adipose tissue biology and to establish a target-oriented compound screening, we performed a high throughput siRNA screen with primary (pre)adipocytes, using a druggable siRNA library targeting 7,784 human genes. The primary screen showed that 459 genes affected adipogenesis and/or lipid accumulation after knock-down. Out of these hits, 333 could be validated in a secondary screen using independent siRNAs and 110 genes were further regulated on the gene expression level during adipogenesis. Assuming that these genes are involved in neutral lipid storage and/or adipocyte differentiation, we performed InCell-Western analysis for the most striking hits to distinguish between the two phenotypes. Beside well known regulators of adipogenesis and neutral lipid storage (i.e. PPARγ, RXR, Perilipin A) the screening revealed a large number of genes which have not been previously described in the context of fatty tissue biology such as axonemal dyneins. Five out of ten axonemal dyneins were identified in our screen and quantitative RT-PCR-analysis revealed that these genes are expressed in preadipocytes and/or maturing adipocytes. Finally, to show that the genes identified in our screen are per se druggable we performed a proof of principle experiment using an antagonist for HTR2B. The results showed a very similar phenotype compared to knock-down experiments proofing the “druggability”. Thus, we identified new adipogenesis-associated genes and those involved in neutral lipid storage. Moreover, by using a druggable siRNA library the screen data provides a very attractive starting point to identify anti-obesity compounds targeting the adipose tissue

    Mouse Studies to Shape Clinical Trials for Mitochondrial Diseases: High Fat Diet in Harlequin Mice

    Get PDF
    BACKGROUND: Therapeutic options in human mitochondrial oxidative phosphorylation (OXPHOS) diseases have been poorly evaluated mostly because of the scarcity of cohorts and the inter-individual variability of disease progression. Thus, while a high fat diet (HFD) is often recommended, data regarding efficacy are limited. Our objectives were 1) to determine our ability to evaluate therapeutic options in the Harlequin OXPHOS complex I (CI)-deficient mice, in the context of a mitochondrial disease with human hallmarks and 2) to assess the effects of a HFD. METHODS AND FINDINGS: Before launching long and expensive animal studies, we showed that palmitate afforded long-term death-protection in 3 CI-mutant human fibroblasts cell lines. We next demonstrated that using the Harlequin mouse, it was possible to draw solid conclusions on the efficacy of a 5-month-HFD on neurodegenerative symptoms. Moreover, we could identify a group of highly responsive animals, echoing the high variability of the disease progression in Harlequin mice. CONCLUSIONS: These results suggest that a reduced number of patients with identical genetic disease should be sufficient to reach firm conclusions as far as the potential existence of responders and non responders is recognized. They also positively prefigure HFD-trials in OXPHOS-deficient patients
    corecore