75 research outputs found
MetaboNetworks, an interactive Matlab-based toolbox for creating, customizing and exploring sub-networks from KEGG.
Summary: MetaboNetworks is a tool to create custom sub-networks in Matlab using main reaction pairs as defined by the Kyoto Encyclopaedia of Genes and Genomes and can be used to explore transgenomic interactions, for example mammalian and bacterial associations. It calculates the shortest path between a set of metabolites (e.g. biomarkers from a metabonomic study) and plots the connectivity between metabolites as links in a network graph. The resulting graph can be edited and explored interactively. Furthermore, nodes and edges in the graph are linked to the Kyoto Encyclopaedia of Genes and Genomes compound and reaction pair web pages. Availability and implementation: MetaboNetworks is available from http://www.mathworks.com/matlabcentral/fileexchange/42684. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
An analytical pipeline for quantitative characterization of dietary intake: application to assess grape intake.
The gut microbiota influences skeletal muscle mass and function in mice
The functional interactions between the gut microbiota and the host are important for host physiology, homeostasis, and sustained health. We compared the skeletal muscle of germ-free mice that lacked a gut microbiota to the skeletal muscle of pathogen-free mice that had a gut microbiota. Compared to pathogen-free mouse skeletal muscle, germ-free mouse skeletal muscle showed atrophy, decreased expression of insulin-like growth factor 1, and reduced transcription of genes associated with skeletal muscle growth and mitochondrial function. Nuclear magnetic resonance spectrometry analysis of skeletal muscle, liver, and serum from germ-free mice revealed multiple changes in the amounts of amino acids, including glycine and alanine, compared to pathogen-free mice. Germ-free mice also showed reduced serum choline, the precursor of acetylcholine, the key neurotransmitter that signals between muscle and nerve at neuromuscular junctions. Reduced expression of genes encoding Rapsyn and Lrp4, two proteins important for neuromuscular junction assembly and function, was also observed in skeletal muscle from germ-free mice compared to pathogen-free mice. Transplanting the gut microbiota from pathogen-free mice into germ-free mice resulted in an increase in skeletal muscle mass, a reduction in muscle atrophy markers, improved oxidative metabolic capacity of the muscle, and elevated expression of the neuromuscular junction assembly genes Rapsyn and Lrp4 Treating germ-free mice with short-chain fatty acids (microbial metabolites) partly reversed skeletal muscle impairments. Our results suggest a role for the gut microbiota in regulating skeletal muscle mass and function in mice
Dietary metabotype modelling predicts individual responses to dietary interventions
Habitual consumption of poor quality diets is linked directly to risk factors for many non communicable disease. This has resulted in the vast majority of countries globally and the World Health Organaisation developing policies for healthy eating to reduce the prevalence of non communicable disease in the population. However, there is mounting evidence of variability in individual metabolic responses to any dietary intervention. We have developed a method for applying a pipeline for understanding inter-individual differences in response to diet, based on coupling data from highly-controlled dietary studies with deep metabolic phenotyping. In this feasibility study, we create an individual Dietary Metabotype Score (DMS) that embodies inter-individual variability in dietary response and captures consequent dynamic changes in concentrations of urinary metabolites. We find an inverse relationship between the DMS and blood glucose concentration. There is also a relationship between the DMS and urinary metabolic energy loss. Furthermore we employ a metabolic entropy approach to visualize individual and collective responses to dietary. Potentially, the DMS offers a method to target and to enhance dietary response at an individual level therefore reducing burden of non communicable diseases at a population level
Objective assessment of dietary patterns using metabolic phenotyping: a randomized, controlled, crossover trial
Background: The burden of non-communicable diseases, such as obesity, diabetes, coronary heart disease and cancer, can be reduced by the consumption of healthy diets. Accurate monitoring of changes in dietary patterns in response to food policy implementation is challenging. Metabolic profiling allows simultaneous measurement of hundreds of metabolites in urine, many of them influenced by food intake. We aim to classify people according to dietary behaviour and enhance dietary reporting using metabolic profiling of urine. Methods: To develop metabolite models from 19 healthy volunteers who attended a clinical research unit for four day periods on four occasions. We used the World Health Organisation’s healthy eating guidelines (increase fruits, vegetables, wholegrains, dietary fibre and decrease fats, sugars, and salt) to develop four dietary interventions lasting for four days each that ranged from a diet associated with a low to high risk of developing non-communicable disease. Urine samples were measured by 1H-NMR spectroscopy. This study is registered as an International Standard Randomized Controlled Trial, number ISRCTN 43087333. INTERMAP U.K. (n=225) and a healthy-eating Danish cohort (n=66) were used as free-living validation datasets. Findings: There was clear separation between the urinary metabolite profiles of the four diets. We also demonstrated significant stepwise differences in metabolite levels between the lowest and highest metabolic risk diets and developed metabolite models for each diet. Application of the derived metabolite models to independent cohorts confirmed the association between urinary metabolic and dietary profiles in INTERMAP (P<0•001) and the Danish cohort (P<0•001). Interpretation: Urinary metabolite models, developed in a highly controlled environment, can classify groups of free-living people into consumers of dietary profiles associated with lower or higher non-communicable disease risk based on multivariate metabolite patterns. This approach enables objective monitoring of dietary patterns in population settings and enhances validity of dietary reporting. Funding: National Institute for Health Research (NIHR) and Medical Research Council (MRC)
Integrated fecal microbiome–metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome
To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS) several modalities of biological and clinical data must be combined. We aimed to identify profiles of faecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Faecal metabolites were measured using proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy and gut microbiome using Shotgun Metagenomic Sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HC) with extensive clinical, biological and phenotype information. Data were analysed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve (AUC) of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on faecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavourable stress-response related to gastrointestinal symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS
Spatial lipidomics reveals sphingolipid metabolism as anti-fibrotic target in the liver
\ua9 2025 The Authors. Background and aims: Steatotic liver disease (SLD), which encompasses various causes of fat accumulation in the liver, is a major cause of liver fibrosis. Understanding the specific mechanisms of lipotoxicity, dysregulated lipid metabolism, and the role of different hepatic cell types involved in fibrogenesis is crucial for therapy development. Methods: We analysed liver tissue from SLD patients and 3 mouse models. We combined bulk/spatial lipidomics, transcriptomics, imaging mass cytometry (IMC) and analysis of published spatial and single-cell RNA sequencing (scRNA-seq) data to explore the metabolic microenvironment in fibrosis. Pharmacological inhibition of sphingolipid metabolism with myriocin, fumonisin B1, miglustat and D-PDMP was carried out in hepatic stellate cells (HSCs) and human precision cut liver slices (hPCLSs). Results: Bulk lipidomics revealed increased glycosphingolipids, ether lipids and saturated phosphatidylcholines in fibrotic samples. Spatial lipidomics detected >40 lipid species enriched within fibrotic regions, notably sphingomyelin (SM) 34:1. Using bulk transcriptomics (mouse) and analysis of published spatial transcriptomics data (human) we found that sphingolipid metabolism was also dysregulated in fibrosis at transcriptome level, with increased gene expression for ceramide and glycosphingolipid synthesis. Analysis of human scRNA-seq data showed that sphingolipid-related genes were widely expressed in non-parenchymal cells. By integrating spatial lipidomics with IMC of hepatic cell markers, we found excellent spatial correlation between sphingolipids, such as SM(34:1), and myofibroblasts. Inhibiting sphingolipid metabolism resulted in anti-fibrotic effects in HSCs and hPCLSs. Conclusions: Our spatial multi-omics approach suggests cell type-specific mechanisms of fibrogenesis involving sphingolipid metabolism. Importantly, sphingolipid metabolic pathways are modifiable targets, which may have potential as an anti-fibrotic therapeutic strategy
Performance of metabonomic serum analysis for diagnostics in paediatric tuberculosis
We applied a metabonomic strategy to identify host biomarkers in serum to diagnose paediatric tuberculosis (TB) disease. 112 symptomatic children with presumptive TB were recruited in The Gambia and classified as bacteriologically-confirmed TB, clinically diagnosed TB, or other diseases. Sera were analysed using 1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Multivariate data analysis was used to distinguish patients with TB from other diseases. Diagnostic accuracy was evaluated using Receiver Operating Characteristic (ROC) curves. Model performance was tested in a validation cohort of 36 children from the UK. Data acquired using 1H NMR demonstrated a sensitivity, specificity and Area Under the Curve (AUC) of 69% (95% confidence interval [CI], 56–73%), 83% (95% CI, 73–93%), and 0.78 respectively, and correctly classified 20% of the validation cohort from the UK. The most discriminatory MS data showed a sensitivity of 67% (95% CI, 60–71%), specificity of 86% (95% CI, 75–93%) and an AUC of 0.78, correctly classifying 83% of the validation cohort. Amongst children with presumptive TB, metabolic profiling of sera distinguished bacteriologically-confirmed and clinical TB from other diseases. This novel approach yielded a diagnostic performance for paediatric TB comparable to that of Xpert MTB/RIF and interferon gamma release assays
The Association of Cardiometabolic, Diet and Lifestyle Parameters With Plasma Glucagon-like Peptide-1: An IMI DIRECT Study
\ua9 The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society.Context: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. Objective: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. Methods: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. Results: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. Conclusion: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D
Urine metabolome profiling of immune-mediated inflammatory diseases
Background: Immune-mediated inflammatory diseases (IMIDs) are a group of complex and prevalent diseases where disease diagnostic and activity monitoring is highly challenging. The determination of the metabolite profiles of biological samples is becoming a powerful approach to identify new biomarkers of clinical utility. In order to identify new metabolite biomarkers of diagnosis and disease activity, we have performed the first large-scale profiling of the urine metabolome of the six most prevalent IMIDs: rheumatoid arthritis, psoriatic arthritis, psoriasis, systemic lupus erythematosus, Crohn?s disease, and ulcerative colitis. Methods: Using nuclear magnetic resonance, we analyzed the urine metabolome in a discovery cohort of 1210 patients and 100 controls. Within each IMID, two patient subgroups were recruited representing extreme disease activity (very high vs. very low). Metabolite association analysis with disease diagnosis and disease activity was performed using multivariate linear regression in order to control for the effects of clinical, epidemiological, or technical variability. After multiple test correction, the most significant metabolite biomarkers were validated in an independent cohort of 1200 patients and 200 controls. Results: In the discovery cohort, we identified 28 significant associations between urine metabolite levels and disease diagnosis and three significant metabolite associations with disease activity (PFDR < 0.05). Using the validation cohort, we validated 26 of the diagnostic associations and all three metabolite associations with disease activity (PFDR < 0.05). Combining all diagnostic biomarkers using multivariate classifiers we obtained a good disease prediction accuracy in all IMIDs and particularly high in inflammatory bowel diseases. Several of the associated metabolites were found to be commonly altered in multiple IMIDs, some of which can be considered as hub biomarkers. The analysis of the metabolic reactions connecting the IMID-associated metabolites showed an overrepresentation of citric acid cycle, phenylalanine, and glycine-serine metabolism pathways. Conclusions: This study shows that urine is a source of biomarkers of clinical utility in IMIDs. We have found that IMIDs show similar metabolic changes, particularly between clinically similar diseases and we have found, for the first time, the presence of hub metabolites. These findings represent an important step in the development of more efficient and less invasive diagnostic and disease monitoring methods in IMIDs
- …
