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Summary
Background Accurate monitoring of changes in dietary patterns in response to food policy implementation is 
challenging. Metabolic profi ling allows simultaneous measurement of hundreds of metabolites in urine, the 
concentrations of which can be aff ected by food intake. We hypothesised that metabolic profi les of urine samples 
developed under controlled feeding conditions refl ect dietary intake and can be used to model and classify dietary 
patterns of free-living populations. 

Methods In this randomised, controlled, crossover trial, we recruited healthy volunteers (aged 21–65 years, BMI 
20–35 kg/m²) from a database of a clinical research unit in the UK. We developed four dietary interventions with a 
stepwise variance in concordance with the WHO healthy eating guidelines that aim to prevent non-communicable 
diseases (increase fruits, vegetables, whole grains, and dietary fi bre; decrease fats, sugars, and salt). Participants attended 
four inpatient stays (72 h each, separated by at least 5 days), during which they were given one dietary intervention. The 
order of diets was randomly assigned across study visits. Randomisation was done by an independent investigator, with 
the use of opaque, sealed, sequentially numbered envelopes that each contained one of the four dietary interventions in 
a random order. Participants and investigators were not masked from the dietary intervention, but investigators analysing 
the data were masked from the randomisation order. During each inpatient period, urine was collected daily over 
three timed periods: morning (0900–1300 h), afternoon (1300–1800 h), and evening and overnight (1800–0900 h); 24 h 
urine samples were obtained by pooling these samples. Urine samples were assessed by proton nuclear magnetic 
resonance (¹H-NMR) spectroscopy, and diet-discriminatory metabolites were identifi ed. We developed urinary metabolite 
models for each diet and identifi ed the associated metabolic profi les, and then validated the models using data and 
samples from the INTERMAP UK cohort (n=225) and a healthy-eating Danish cohort (n=66). This study is registered 
with ISRCTN, number ISRCTN43087333.

Findings Between Aug 13, 2013, and May 18, 2014, we contacted 300 people with a letter of invitation. 78 responded, of 
whom 26 were eligible and invited to attend a health screening. Of 20 eligible participants who were randomised, 
19 completed all four 72 h study stays between Oct 2, 2013, and July 29, 2014, and consumed all the food provided. 
Analysis of ¹H-NMR spectroscopy data indicated that urinary metabolic profi les of the four diets were distinct. 
Signifi cant stepwise diff erences in metabolite concentrations were seen between diets with the lowest and highest 
metabolic risks. Application of the derived metabolite models to the validation datasets confi rmed the association 
between urinary metabolic and dietary profi les in the INTERMAP UK cohort (p<0·0001) and the Danish cohort 
(p<0·0001). 

Interpretation Urinary metabolite models developed in a highly controlled environment can classify groups of free-
living people into consumers of diets associated with lower or higher non-communicable disease risk on the basis of 
multivariate metabolite patterns. This approach enables objective monitoring of dietary patterns in population 
settings and enhances the validity of dietary reporting.

Funding UK National Institute for Health Research and UK Medical Research Council.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access Article under the CC BY license. 

Introduction
So-called western dietary patterns (ie, high in saturated 
fat, cholesterol, sodium, and added sugars; low in fruits, 
vegetables, and fi bre) increase the risk of obesity and 
many non-communicable diseases, including diabetes, 
coronary heart disease, and cancers.1–4 Overall dietary 
patterns might be more informative about non-
communicable disease risk than individual foods 
or nutrients.5 Many governments have introduced 

population-based policies aiming to improve dietary 
patterns and reduce disease burden. These policies have a 
common core goal (refl ected in the WHO Global Strategy 
on Diet, Physical Activity and Health6) of decreasing added 
sugar, sodium, and total fat consumption, and increasing 
intakes of wholegrain cereals, fruits, vegetables, and fi bre. 
Results from the North Karelia project7 showed that such 
dietary change can contribute to decreased coronary heart 
disease mortality at the population level.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2213-8587(16)30419-3&domain=pdf
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A major limitation of nutritional science is the objective 
assessment of dietary intake in free-living populations. 
Monitoring of dietary change in national surveys and 
large prospective studies relies on self-reported food 
intake using instruments such as food frequency 
questionnaires, dietary recall, and diet diaries; the 
prevalence of misreporting with these tools is estimated 
at 30–88%.8,9 Compounding this problem, bias in dietary 
misreporting (with under-reporting biased towards 
unhealthy foods and over-reporting towards fruits and 
vegetables10) contributes to data inaccuracy and mis-
interpretation.11,12 Moreover, under-reporting of dietary 
energy intake is particularly common in obese 
individuals,8 which is a major concern considering the 
increasing prevalence of obesity worldwide.13

Established dietary biomarkers such as urinary sodium, 
potassium, and nitrogen track intake of specifi c nutrients 
only. To our knowledge, no independent, objective 
method exists for assessing overall dietary patterns in 
free-living populations. This limitation has led to 

confl icting research fi ndings,12 partly because of 
inadequate dietary reporting in epidemiological surveys.14 
Urine and plasma have been shown to contain individual 
metabolites that are refl ective of self-reported food intake 
data.15–18 We now propose a new approach to assess dietary 
patterns using proton nuclear magnetic resonance 
(¹H-NMR) spectroscopic profi ling. This technology has 
potential to simultaneously measure hundreds of 
metabolites, the concentrations of which are aff ected by 
food intake.19 If validated, this approach could enhance 
understanding of the relation between food consumption 
and disease risk, a concept embedded in the Precision 
Medicine Initiative.20 Although a few reports15–18 have 
linked metabolite profi les to dietary patterns, these 
studies used self-reported food intake. To address dietary 
misreporting by free-living populations,8,9 we hypothesised 
that metabolic profi les of urine from volunteers exposed 
to a range of diets based on WHO dietary guidelines6 for 
the prevention of non-communicable disease risks 
(obesity, diabetes, and coronary heart disease), under 

Research in context

Evidence before this study
We searched PubMed for studies published in English from 
database inception to Oct 6, 2016, using the search terms 
“metabolomics OR metabonomics OR metabolic profi ling OR 
metabolomic OR metabonomic OR metabolite profi ling” and 
“dietary intervention OR dietary intake OR dietary pattern” and 
excluding non-human studies and review, perspective, opinion, 
comment, and protocol articles. The search identifi ed 58 studies, 
of which 45 were related to associations between dietary 
patterns and metabolite profi les. 27 of these studies were related 
to consumption of dietary patterns rather than supplementation 
of a standard diet with a specifi c food. All 27 studies used 
self-reported dietary data obtained with instruments such as 
food frequency questionnaires, dietary recall, and diet diaries, 
which can be prone to misreporting, with under-reporting biased 
towards unhealthy foods and over-reporting towards fruits and 
vegetables. Such inadequate dietary reporting in epidemiological 
surveys has led to confl icting research fi ndings. 

We did not fi nd any studies that investigated associations 
between dietary patterns and metabolic profi les in a controlled 
crossover clinical trial setting. Established dietary biomarkers 
such as urinary sodium, potassium, and nitrogen track intake of 
specifi c nutrients only, and although a few reports have linked 
specifi c metabolite profi les to dietary patterns, these studies 
used self-reported food intake only. Urine and plasma have been 
shown to contain individual metabolites that are refl ective of 
self-reported food intake data. In this study, we aimed to develop 
a new approach to assess dietary patterns using proton nuclear 
magnetic resonance (¹H-NMR) spectroscopic profi ling of urine.

Added value of this study
We developed a metabolic profi ling strategy, using NMR 
spectroscopy of urine samples, that can objectively assess 

dietary profi les. We have shown that urinary metabolite 
models, developed in a highly controlled environment, can be 
used to classify free-living people into consumers of a dietary 
profi le associated with low or high risk of non-communicable 
disease. Previous studies that related dietary patterns to 
metabolic profi les relied on self-reported dietary data or were 
performed in a non-controlled setting (eg, a home 
environment), which increases the possibility of misreporting 
and non-compliance. Our study was performed in a controlled 
environment to guarantee compliance and eliminate 
misreporting, and we validated our model using both internal 
controlled clinical trial data and external cohort data. This 
approach has the potential to be used to monitor dietary 
patterns objectively in population settings without the risk of 
making false inferences based on data prone to misreporting 
or non-compliance, which can confound the true eff ect of a 
diet on health. 

Implications of all the available evidence
Unhealthy dietary patterns are major risk factors of multiple 
common diseases, and many countries have local and national 
health policies that encourage dietary change. However, 
existing dietary tools are inadequate for assessing responses 
in dietary behaviour that result from policy change. 
Implementation of our metabolic profi ling approach and 
analyses of dietary patterns based on urine metabolite profi les 
might not only enhance understanding of the relations 
between diet and health but also off er an objective method 
for dietary screening of large numbers of people. Our 
metabolic profi ling strategy could be used to obtain objective 
information on adherence to healthy eating programmes 
aimed at combating obesity and common diseases. 
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highly controlled conditions, refl ect dietary intake and 
can be used to model and classify dietary patterns of free-
living people from large cross-sectional cohorts, without 
requiring self-reported food intake. In this study, we 
aimed to quantify the eff ect of diverse dietary patterns on 
urinary metabolic profi les in a highly controlled 
environment.

Methods
Study design and participants
In this randomised, controlled, crossover trial, we recruited 
participants from a database of healthy volunteers at the 
UK National Institute for Health Research (NIHR)/
Wellcome Trust Imperial Clinical Research Facility (CRF). 
These volunteers had previously been screened at the CRF 
and had expressed an interest in being contacted regarding 
future research studies. Volunteers in the database who 
were aged 21–65 years and had a BMI of 20–35 kg/m² were 
contacted with a letter of invitation, and those who 
responded with an interest in participation were screened, 
initially by email or telephone and subsequently at the 
CRF. Potential participants were excluded if they had 
clinically signifi cant illnesses, if they reported weight loss 
or gain of 3 kg or more in the preceding 2 months, if they 
were taking prescription medication, if they were current 
smokers or substance abusers, or if they presented any 
abnormalities on physical examination, electrocardio-
graphy, or screening blood tests. Women were ineligible if 
they were pregnant or breastfeeding.

The study was approved by the London–Brent Research 
Ethics Committee and done in accordance with the 
Declaration of Helsinki (13/LO/0078). The study protocol 
is available in the appendix. All participants provided 
written informed consent.

Randomisation and masking
Participants were given one dietary intervention during 
each inpatient stay. The order of diets was randomly 
assigned across study visits. Randomisation was done by 
an investigator who was not directly involved in the 
study, with the use of opaque, sealed, sequentially 
numbered envelopes that each contained one of the four 
dietary interventions in a random order. The envelopes 
were stored securely, away from the trial site, and opened 
in sequence by an investigator (ESC) as each participant 
was enrolled. Although participants and investigators 
could not be masked from the dietary intervention 
during the study period, investigators analysing the data 
were masked from the randomisation order.

Procedures
Participants attended the CRF for a 72 h inpatient period 
on four occasions, separated by at least 5 days (appendix 
p 10). We chose 3 days (72 h) for the inpatient period 
because most food-derived metabolites are absorbed and 
eliminated in urine within 48 h, as evidenced in numerous 
studies (including other studies done in our laboratories) 
of the kinetics of absorption, bioavailability, and 
elimination of several food metabolites contributing to 
the urinary metabolome.21 The minimum 5 day gap 
between dietary intervention periods ensured that any 
possible carryover was minimised. For example, tartaric 
acid, a marker of grape consumption, was shown to be 
cleared from the body within a few hours in an excretion 
kinetics study.22 Similarly, other metabolites associated 
with diet, such as proline betaine, creatine, and 
trimethylamine N-oxide (TMAO), are cleared from the 
body within a few hours.23,24

The Nutrition and Dietetic Research Group at Imperial 
College London (London, UK; led by GF) developed four 
dietary interventions with a stepwise variance in 
concordance with the WHO healthy eating guidelines6—
diet 1 was the most concordant with the guidelines, and 
diet 4 was the least concordant (table 1; appendix p 5). 
High energy density is an important driver of the 
association between poor diets and the risk of obesity 
and diabetes;25 therefore, the diets had a range of energy 
densities (table 1; appendix p 5). 

Participants were asked to consume all the food 
provided and were allowed to drink water as they wished. 
The expectation to consume all food provided and not to 
leave the CRF during each visit was fully explained to 
potential participants before they provided consent to 
take part in the study. This adherence was monitored 
strictly: all food was weighed immediately before 
being given to the participants, and any uneaten food 
was weighed. Physical activity was also controlled; 
participants were allowed to engage in only very light 
physical activity (no more strenuous than walking from 
their hospital bed to the toilet).

During each 3 day inpatient period, urine was collected 
daily over three timed periods: morning collection 

Diet 1 Diet 2 Diet 3 Diet 4

Energy (kcal) 2260 2259 2427 2490

Energy density (kcal/g) 1·2 1·5 1·6 1·9

Proportion of protein 24% 22% 16% 13%

Proportion of carbohydrate 51% 51% 46% 44%

Total sugar (g) 14 18 22 25

Proportion of fat 23% 24% 35% 42%

Saturated fatty acids (g) 5 7 19 20

Monounsaturated fatty acids (g) 8 6 14 12

Polyunsaturated fatty acids (g) 8 5 4 2

Total trans fatty acids (g) 0·5 0·5 1 1

Fibre (g) 45·9 32·1 31·5 13·6

Sodium (mg) 2367 2261 3812 3066

Fruit and vegetables (g) 600 300 180 100

DASH score 37 30 24 11

Specifi c diet information (foods consumed at specifi c times) is shown in the 
appendix (p 5). DASH=Dietary Approaches to Stop Hypertension. 

Table 1: Macronutrient content and characteristics of the dietary 
interventions

See Online for appendix
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(0900–1300 h; cumulative sample 1), afternoon collection 
(1300–1800 h; cumulative sample 2), and evening and 
overnight collection (1800–0900 h; cumulative sample 3). 
24 h urine samples were obtained by pooling these 
samples (appendix p 10). Urine samples were prepared 
with a pH 7·4 phosphate buff er for ¹H-NMR spectroscopy 
as described previously.26 We analysed samples at 300 K 
on a 600 MHz spectrometer (Bruker BioSpin, Karlsruhe, 
Germany) using a standard one-dimensional pulse 
sequence with water-presat uration.26 Acquisition 
parameters are shown in the appendix (pp 2–3).

Statistical analysis
To the best of our knowledge, this study was the fi rst-in-
human trial of metabolic profi ling in a controlled feeding 
setting; therefore, no formal power calculation could be 
undertaken. However, to provide a basis for sample size 
calculation, we used data on urinary proline betaine, 
which we selected as a representative marker for 
nutritional intake.23 Heinzmann and colleagues23 
suggested that urinary concentration of this metabolite 
would rise by 50 μmol/L with each incremental rise in 
fruit intake (ie, pieces of fruit) in the experimental setting. 
With an SD of 40 μmol/L, assuming a power of 0·95 and 
an alpha of 0·05 to detect a diff erence of 50 μmol/L, we 
estimated that we would need 12 volunteers. Because the 
protocol required a high amount of volunteer time and 
involvement (12 inpatient days plus travelling time) and 
volunteers could withdraw from the study, we requested 
permission to recruit 30 people, with the aim of having a 
cohort of roughly 20 people. Of note, in two previous 
dietary studies27,28 researchers identifi ed individual 
biomarkers of food intake after controlled feeding having 
included fewer than 20 participants in each study. All 
19 participants who completed the study were included in 
the analysis. 

¹H-NMR spectra (16 000 spectral variables) were 
manually phased and digitised over the range δ0·5–9·5 
and imported into MATLAB (release 2014a). A combination 
of data-driven29 and experimental structural elucidation 
techniques and spiking-in of chemical standards was used 
to aid structural identifi cation of diet-discriminatory 
metabolites. We used global urinary ¹H-NMR spectral 
profi les representing diets 1 and 4 to generate 
representative metabolite patterns relating to each diet. 
Global metabolic profi ling entails using methods that aim 
to measure all metabolites, or as many as possible with 
the assay, in a sample, as opposed to targeted analysis, in 
which only specifi c compounds are measured. Because 
this study is the fi rst of its kind, we did not know a priori 
which compounds were of interest; therefore, we used 
global metabolic profi ling to capture as much information 
as possible rather than limit our information to a set of 
targeted compounds.

We modelled data with partial least squares discriminant 
analysis (PLS-DA), using Monte Carlo cross-validation 
(MCCV) to assess model robustness using a total of 

1000 individual models; the data were centred and scaled 
to account for the repeated-measures design. The mean 
(Tpred) and variance of each predicted sample were estimated 
using all MCCV models. We then used this MCCV–PLS-DA 
model to predict 24 h urinary global profi les of volunteers 
after 3 days of strict adherence to the intermediate diets 
(ie, diets 2 and 3) without informing the model whether 
these urinary profi les belonged to diet 2 or diet 3. Day 3 
samples were used for modelling because these were 
timed to be 48 h after starting the dietary intervention and 
ensured diet homoeostasis. Data from day 1 and day 2 
samples served as internal validation data.

Across the 1000 models the mean prediction (Tpred) of 
each sample was calculated from all models in which the 
sample was part of the validation set. A positive Tpred 

indicates that the urinary metabolic profi le of the sample 
resembles more diet 1 than diet 4, and vice versa for a 
negative Tpred. The variance of Tpred was estimated from 
the same predictions as were used for calculating the 
mean. We then calculated the Kernel density estimate by 
summing the resulting Gaussian distributions of all 

Figure 1: Trial profi le

52 excluded
20 aged >65 years
10 aged <20 years
16 BMI >35 kg/m²

6 BMI <20 kg/m²

5 declined participation
1 not eligible

1 BMI >35 kg/m²

42 declined participation
10 not eligible

8 had prescription medication
2 BMI >35 kg/m²

19 completed study and assessed

20 randomised

26 screened on site

1 withdrawn because of scheduling conflicts

222 did not respond

78 screened by email or telephone

300 sent letters of invitation

352 healthy volunteers in database
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samples within each group. A p value was calculated for 
each variable on the basis of 25 bootstrap resamplings of 
the training data in each of 1000 models to estimate the 
variance and the mean coeffi  cient across the 1000 
models. Spectral variable importance was assessed with 
the false discovery rate q value, with a value of 0·01 or 
less as the cutoff  for signifi cance.

To assess the ability of our model—based on the 24 h 
urinary collections—to independently predict healthy 
eating in a free-living population, we used data from 
the UK cohort (n=225 from a cohort of 499) of the 
INTERMAP study as our validation dataset. The 
INTERMAP study30 investigated dietary and other factors 
associated with blood pressure in 4680 men and women 
aged 40–59 years from 17 population samples in four 
countries (China, Japan, UK, and USA). Dietary intake 
data were obtained from two consecutive multipass 24 h 
recalls31 on two occasions that were 3 weeks apart on 
average. For this analysis, we used the 24 h urine sample 
data, corresponding to the fi rst two multipass 24 h dietary 
recalls, from the UK cohort.32 We stratifi ed participants 
into percentile groups (0 to 10th, 45th to 55th, and 
90th to 100th) using the Dietary Approaches to Stop 
Hypertension (DASH) index (appendix p 2),33 which is a 
tool used for healthy eating assessment in several 
countries34 and has been used in INTERMAP. 

Additionally, to assess the ability of our model to inform 
a non-UK dataset, we used data from a healthy omnivorous 
cohort of 66 participants recruited and phenotyped at the 
University of Copenhagen (Copenhagen, Denmark) for 
our external validation dataset (appendix p 7). We calculated 
DASH scores for these participants on the basis of their 
4 day dietary records according to the quintiles defi ned in 
the appendix (pp 2, 6). In this cohort, metabolite profi ling 
was done on spot urine samples collected after the fi rst 
morning void following a 10 h overnight fast. Therefore, 
we mapped these samples to models derived from 
cumulative sample 1 (morning collection) in our trial. The 
method used to model spot urine samples is provided in 
the appendix (pp 4, 14).

To account for diff erences in urine osmolality, we 
normalised all spectra from our study cohort and the two 
validation cohorts using Probabilistic Quotient 
Normalization35 to the median spectrum of diets 1 and 4 
combined. This procedure corrects the metabolite con-
centrations for diff erences in dilution across samples. 
Such diff erences can arise from diff erent intakes of water 
or liquids between participants (causing diff erences in 
metabolite concentrations) and from diff erent amounts 
of foods consumed (eg, high caloric intakes). Therefore, 
any eff ect of these potential confounders is attenuated by 
the normalisation procedure.

We used the Skillings-Mack and Kruskal-Wallis tests, 
as appropriate, to assess diff erences among multiple 
groups, and non-parametric post-hoc (Wilcoxon’s signed 
rank and rank sum) tests to determine pairwise 
diff erences. p values from post-hoc tests were adjusted 
for multiple testing with Hommel’s adjustment. More 
details on the statistical analysis are given in the appendix 
(pp 3–4). All statistical analyses were done in MATLAB.

This trial was registered on the NIHR UK clinical trial 
gateway and with ISRCTN, number ISRCTN43087333.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. IG-P, JMP, EH, and GF had full 
access to all the data in the study, and the corresponding 
authors (GF and EH) had fi nal responsibility for the 
decision to submit for publication.

Results
Of 352 individuals in the database of healthy volunteers 
at the NIHR/Wellcome Trust Imperial CRF, we 
contacted 300 who were eligible for the study with a letter 
of invitation between Aug 13, 2013, and May 18, 2014 (52 
were ineligible on the basis of age or BMI). 78 individuals 
responded to the invitation and, after screening, 
20 remained eligible and enrolled into the study (fi gure 1). 
Between Oct 2, 2013, and July 29, 2014, 19 participants 
completed the four inpatient periods and consumed all 
the food provided; their baseline characteristics are 
shown in table 2.

Data (n=19)

Sex

Male 10 (53%)

Female 9 (47%)

Age (years) 55·8 (12·6; 29–65)

Ethnic origin

White 18 (95%)

Asian 1 (5%)

Weight (kg) 74·5 (12·5; 52·8–107·9)

BMI (kg/m2) 25·6 (3·2; 21·1–33·3)

Energy expenditure (kcal/day)* 2099 (351; 1668–2995)

Glucose (mmol/L)† 4·8 (0·4; 4·1–5·4)

HbA1c (%)† 5·5% (0·1, 5·1–5·8) 

HbA1c (mmol/mol)† 36·4 (0·9; 32–40)

Triglycerides (mmol/L)‡ 0·9 (0·3; 0·5–1·4)

Cholesterol (mmol/L)‡

Total 5·1 (0·7; 3·9–6·1)

LDL 3·1 (0·7; 1·7–4·2)

HDL 1·6 (0·4; 0·9–2·6)

Liver function tests (IU/L)‡

Alanine transaminase 21·2 (7·4; 12·3–40·0)

Aspartate transaminase 19·5 (3·2; 15·0–24·3)

Data are n (%) or mean (SD; range). IU=international units. *Estimated with a 
physical activity correction of 1·4 in all participants (appendix p 2). †From plasma 
samples. ‡From serum samples. 

Table 2: Baseline characteristics
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Figure 2: Associations of urinary metabolites with diets 1 and 4 in 19 participants
Data from the third 24 h urine collection are shown; data from the fi rst and second 24 h urine collection are shown in the appendix (p 11). (A) Mean 600 MHz 1H-NMR 
spectrum of the 19 participants. (B) Manhattan plot showing −log10(q) × sign of regression coeffi  cient (β) of the MCCV–PLS-DA model for the 16 000 spectral variables. 
A p value was calculated for each variable on the basis of 25 bootstrap resamplings of the training data in each of 1000 models to estimate the variance. Red peaks 
represent the 19 metabolites excreted in higher amounts after diet 1 and blue peaks represent the nine metabolites excreted in higher amounts after diet 4. The two 
horizontal lines indicate the cutoff s for the false discovery rate on the log10 scale. (C–E) Metabolite concentrations for 19 participants after following diet 1 and diet 4 for 
(C) hippurate (a urinary marker of fruit and vegetable consumption; number 24 in part A), (D) carnitine (a marker of red meat consumption; number 11 in part A), and 
(E) tartrate (a marker of grape intake; number 25 in part A). 1H-NMR=proton nuclear magnetic resonance. AU=arbitrary unit. MCCV=Monte Carlo cross-validation. 
PLS-DA=partial least squares discriminant analysis. 
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MCCV–PLS-DA models of 24 h urine spectra showed 
systematic diff erences between metabolic phenotypes of 
diets 1 and 4 that were refl ected in both the metabolic 
profi le (fi gure 2) and predicted scores (fi gure 3). From a 
total of 486 peaks (appendix p 3) in the mean ¹H-NMR 
spectrum, 19 identifi ed metabolites were present in 
signifi cantly higher concentrations in urine after 
consumption of diet 1 than after diet 4, and 

nine metabolites were present in signifi cantly increased 
concentrations after consumption of diet 4 (fi gure 2B; 
appendix p 8). For example, all 19 individuals had 
consistent, signifi cant changes in excretion of 
28 metabolites (fi gure 2B), including metabolites with 
well known dietary associations—hippurate (a urinary 
marker of fruit and vegetable intake), carnitine (a marker 
of red meat consumption), and tartrate (a marker of grape 
intake; fi gure 2C–E). Substantial between-person 
variability could be seen in concentrations of hippurate 
(fi gure 2C) and carnitine (fi gure 2D), but the direction of 
association remained the same. For tartaric acid, between-
person variability was also apparent, but because it is a 
quantitative biomarker of grape consumption22 there was 
almost no between-person variation after consumption of 
diet 4, which did not contain any grape-derived products 
(appendix p 5).

Data from the MCCV–PLSA-DA model obtained from 
the analysis of 24 h urine samples from diets 1 and 4 
were used to predict 24 h global urinary metabolic 
profi les of diets 2 and 3 (fi gure 3A). We found a signifi cant 
stepwise increase in predicted scores from diet 4 
(negative scores) to diet 1 (positive scores; Skillings-Mack 
test p=7·21 × 10−⁹; fi gure 3B). The urinary metabolic 
profi les generated from the urine samples obtained after 
diet 3 clustered next to those obtained after diet 4, and 
those from diet 2 clustered adjacent to those from diet 1. 
Additionally, these metabolite patterns were reproducible 
in 24 h samples obtained from the 19 volunteers on 
days 1 and 2 of the 72 h inpatient stay (appendix p 11).

In our fi rst validation dataset (INTERMAP UK cohort), 
urinary metabolic profi les of samples from the group with 
high DASH score (90th to 100th percentile; n=67) 
clustered near those from the diet 1 samples, whereas 
metabolic profi les of samples from the group with low 
DASH score (0 to 10th percentile; n=67) clustered next to 
those from the diet 4 samples (fi gure 4A). The urinary 
metabolic profi les from the group with intermediate 
DASH scores (45th to 55th percentile; n=91) clustered 
between the two extreme categories. Although the Kernel 
density estimate plot showed some overlap between the 
three groups—which was expected because of dietary 
misreporting, estimated to be 22·4% from men and 
30·9% from women in the INTERMAP UK cohort36—a 
signifi cant linear association was seen between DASH 
scores and predicted scores (Kruskal-Wallis test 
p=5·10 × 10−⁶; fi gure 4B). Post-hoc Wilcoxon rank sum test 
corrected by Hommel’s method confi rmed that all 
pairwise comparisons diff ered signifi cantly (fi gure 4). In 
addition to global metabolite profi les, we quantifi ed 
specifi c metabolites from the model known to be 
associated with foods linked to healthy eating—ie, 
hippurate (fruits and vegetables), 4-hydroxyhippurate 
(fruits), and S-methyl-L-cysteine-sulfoxide (cruciferous 
vegetables)—and found that these metabolites were 
present in signifi cantly higher concentrations in urine 
samples from INTERMAP participants with high DASH 

Figure 3: The MCCV–PLS-DA model of metabolic patterns of the four diets for 19 participants
Data from the third 24 h urine collection. (A) Kernel density estimate of the predicted scores (Tpred) for the four diets. 
(B) Mean predicted score for individuals’ spectra after following the diets. (C) Tpred of the four diets. Box and whiskers 
plots indicate median with 25th and 75th percentiles (boxes), interval endpoints (notches of boxes), and 1·5 × IQR 
above or below the 75th and 25th percentiles (whiskers); points are outliers. Post-hoc Wilcoxon’s signed rank test 
for pairwise diff erences (adjusted for multiple testing with Hommel’s method) gave the following p values: diet 1 vs 
diet 2 p=6·71 × 10–⁴; diet 2 vs diet 3 p=5·04 × 10–⁴; diet 3 vs diet 4 p=1·96 × 10–¹; diet 1 vs diet 3 p=3·05 × 10–⁵; diet 2 vs 
diet 4 p=4·58 × 10–⁵; diet 1 vs diet 4 p=3·05 × 10–⁵. MCCV=Monte Carlo cross-validation. PLS-DA=partial least squares 
discriminant analysis.
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scores than in samples from those with low DASH scores 
(appendix p 9). However, S-methyl-L-cysteine-sulfoxide 
(p=0·19) and hippurate (p=0·051) concentrations did not 
diff er signifi cantly between the groups with intermediate 
DASH scores and high DASH scores; similarly; 
concentrations of hippurate (p=0·096) and 4-hydroxy-
hippurate (p=0·15) did not diff er signifi cantly between the 
groups with low DASH scores and intermediate DASH 
scores. The overall fi ndings indicated that the global 
urinary metabolic profi le measured by ¹H-NMR 
spectroscopy (χ² 24·37, p<0·0001) was a more accurate 
predictor of dietary patterns than single markers of 
individual foods consumed (χ² 12·71–21·09, p=0·0017 to 
p<0·0001).

We classifi ed seven INTERMAP participants as 
metabolic outliers (fi gure 4B). On detailed examination 
of their dietary records, one participant (who had low 
DASH score but positive predicted score) was 
considered a misreporter because high amounts of 
proline betaine were found in the urine, but no citrus 
fruits or other dietary sources of proline betaine were 
recorded. The urine of another outlier from the group 
with intermediate DASH scores contained very 
high amounts of N-methylnicotinate (a vitamin B3 
derivative), which contributed greatly to the classifi cation 
of this sample as close to diet 1. This individual had 
consumed very high amounts of coff ee, which is rich in 
niacin (vitamin B3), a precursor of N-methylnicotinate, 
accounting for the high level of urinary excretion. The 
urine of the remaining fi ve outliers (DASH scores 24, 
24, 25, 25, and 30) contained very high amounts of 
paracetamol, the metabolite signals (specifi cally 
sulphate and glucuronide) of which overlap with 
phenylacetylglutamine signals; the fact that 
phenylacetylglutamine was associated with diet 4 could 
help to explain the misclassifi cation.

For the external validation cohort (ie, the Danish 
cohort; n=66), the metabolite profi les aligned with those 
of diets 1 and 2 (appendix p 12), which was confi rmed by 
the high DASH score of the cohort (median 28·5, range 
20–36). The urinary metabolic profi les were again 
associated with the dietary profi les (p<0·0001). Although 
our method worked best with 24 h urine models 
(appendix pp 11, 13), the model created for spot samples 
from the Danish cohort based on cumulative urine 
samples also showed good stratifi cation of metabolic 
phenotypes according to diet. 

Discussion
In this proof-of-principle study, we showed notable 
diff erences in urinary metabolic profi les in a controlled 
feeding condition in which participants consumed four 
defi ned diets diff ering in compliance to the WHO-
recommended healthy diet. We then showed, in two 
independent epidemiological datasets, that these 
metabolic profi le patterns have the potential to classify 
the dietary intake of free-living individuals. We concluded 

that this novel application of metabolic phenotyping at 
the population level has the potential to provide objective 
measures of adherence to dietary recommendations, 

Figure 4: Applicability of our model to predict adherence to diverse diets in the INTERMAP UK cohort
(A, B) Kernel density estimates of the predicted scores (Tpred) of diet 1, diet 4, and the INTERMAP UK cohort 
stratifi ed by DASH scores. Dots and squares represent participants from the study cohort, and crosses represent 
individuals from the INTERMAP UK validation cohort. (C) Tpred of the INTERMAP UK cohort. Box and whiskers plots 
indicate median with 25th and 75th percentiles (boxes), interval endpoints (notches of boxes), and 1·5 × IQR above 
or below the 75th and 25th percentiles (whiskers). Crosses indicate outliers—ie, if the predicted values lie outside 
1·5 times of the IQR (25th to 75th percentile), corresponding to points lying outside 2·7σ (roughly 0·993 of a 
normal distribution) either side of the mean. Post-hoc Wilcoxon’s signed rank test for pairwise diff erences 
(adjusted for multiple testing with Hommel’s method) gave the following p values: 0 to 10th percentile vs 45th to 
55th percentile p=2·32 × 10	²; 45th to 55th percentile vs 90th to 100th percentile p=4·31 × 10	³; 0 to 
10th percentile vs 90th to 100th percentile p=3·53 × 10	⁶. DASH=Dietary Approaches to Stop Hypertension. 
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without the use of dietary surveys, which are known to be 
subject to misreporting, incompleteness, and bias.

We showed that urinary concentrations of biomarkers 
from individual healthy foods—eg, hippurate (a marker of 
fruit and vegetable consumption), (N-acetyl-)S-methyl-L-
cysteine-sulfoxide (cruciferous vegetables), dimethylamine 
and TMAO (fi sh), and 1-methylhistidine and 3-methyl-
histidine (oily fi sh and chicken)—were signifi cantly 
higher after consumption of diet 1 than after diet 4, 
refl ecting increased intakes of fruits, cruciferous 
vegetables, salmon, and chicken that were provided as 
part of diet 1. TMAO is a cryoprotectant in freshwater and 
saltwater fi sh, and urinary concentrations of TMAO are 
associated with recent fi sh intake;37 therefore, high urinary 
TMAO concentrations can be associated with healthy 
diets that are rich in fi sh. However, gut bacteria can 
synthesise TMAO from choline and hence high urinary 
and plasma TMAO concentrations can also originate from 
red meat consumption, which is generally associated with 
adverse health outcomes. Indeed, high concentrations of 
TMAO in plasma and urine have been associated with 
cardiovascular and renal disease, respectively.38 Thus, the 
global pattern of metabolites, which refl ects the totality of 
the diet, is more important in indicating dietary patterns 
than are individual biomarkers.

Although fi ndings from previous studies have shown 
that metabolic profi ling could be used to identify specifi c 
dietary biomarkers associated with diet, our new 
approach allowed diff erentiation of the dietary 
interventions on the basis of global urinary metabolic 
profi les, while also refl ecting specifi c chemicals found in 
individual foods or beverages. We used the characteristic 
metabolic profi les of diets 1 and 4 to predict the dietary 
profi les of individuals consuming diets between these 
two extremes (ie, diets 2 and 3). A clear separation was 
seen across the metabolite profi les of the four diets. We 
also showed signifi cant stepwise diff erences in 
metabolite concentrations from diet 1 to diet 4. Changes 
in individual diet-associated metabolites were consistent 
across the dietary interventions.

To assess the feasibility of using metabolic profi ling as 
an objective and unbiased approach to assess dietary 
patterns in a population setting, we used the INTERMAP 
UK cohort as a validation dataset to investigate whether 
free-living individuals with high dietary DASH scores 
(associated with a reduced risk of non-communicable 
diseases) and low DASH scores (associated with a high 
risk of non-communicable diseases33,34) could be 
distinguished by use of the metabolite profi les from the 
controlled feeding experiment. We showed substantial 
clustering of predicted scores of the metabolic profi les 
according to the DASH scores, suggesting that dietary 
patterns could be predicted by interrogating the whole 
urinary metabolite profi le (not just individual 
metabolites). This approach was based on the concept 
that diff erences in dietary intake are refl ected in the 
relative concentrations of many hundreds of urinary 

metabolites.39 Metabolic analysis revealed that urine from 
participants with high DASH scores in the INTERMAP 
cohort contained an increased abundance of biomarkers 
associated with fruit and vegetable intake—including 
hippurate, 4-hydroxyhippurate, and S-methyl-L-cysteine-
sulfoxide—compared with urine from participants on a 
diet with low DASH scores. The dietary intervention 
models were able to predict dietary patterns regardless of 
the specifi c dietary components. For example, the citrus 
fruit marker proline betaine was present in increased 
abundance in samples from the group with high DASH 
score (appendix p 9) even though citrus fruits were 
not provided as part of the dietary interventions. This 
fi nding suggests that the derived metabolite profi les are 
refl ective of a wider range of healthy diets than those 
used in our trial.

Although the energy intakes across the three groups in 
the INTERMAP cross-sectional study stratifi ed for DASH 
score did not diff er signifi cantly (despite a large spread 
around the median), the participants with low DASH 
scores tended to have higher energy intakes than did 
those with high DASH scores (appendix p 6). However, 
the potential confounding eff ects of energy intake and 
dilution on the urinary metabolome were attenuated by 
the normalisation procedure applied.

Dietary intake data from free-living participants are 
subject to dietary misreporting; therefore, this challenge 
had to be addressed in the validation of our model. The 
INTERMAP epidemiological data have a track record of 
low misreporting rates,36 thus allowing us to address this 
limitation by exploring food intake records of so-called 
metabolic outliers. Because of potential misreporting 
issues, we used a second cohort (the Danish cohort) to 
further validate our model. Since only data from spot 
urine samples after the fi rst void were available for this 
cohort, we matched the timing of this spot urine with the 
morning urine collection in our trial. Our analysis showed 
that the metabolite profi les of the Danish cohort resembled 
those of our participants after consumption of diets 1 
and 2, and concurred with the dietary analysis showing 
that this healthy-eating population had a high median 
DASH score (appendix p 7). These fi ndings suggest that 
our model is robust across diff erent populations.

Although results from several studies33,34 have shown 
that the DASH score is positively associated with health, 
so far the DASH score has not generally been adopted in 
public health policies. We based our experimental dietary 
interventions on internationally accepted healthy eating 
guidelines.6 Several other dietary scoring methods—such 
as the alternate healthy eating index40 and Mediterranean41 
and alternate Mediterranean scores42—exist, but we 
chose to apply the DASH index to all the diets (the ones 
in our trial and the diets consumed by the INTERMAP 
and Danish cohorts) to provide a common scale in which 
the range in absolute numbers is not limited. 
Additionally, the DASH score has been shown to be 
associated with cardiac risk.43
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It is important to understand the diff erence in use of 
spot urine samples compared with 24 h urine samples. 
Although spot urine samples are commonly used in 
epidemiological studies, they provide only the snapshot of 
the urinary metabolome for a very specifi c sampling time, 
whereas 24 h samples provide a time-averaged window on 
metabolism encompassing diurnal variation and other 
lifestyle-related fl uctuations. Global metabolic changes are 
thus more diffi  cult to assess in spot samples; use of the 
24 h model to predict spot samples taken 2 h after lunch, 
5 h after lunch, and 2 h after dinner showed that variability  
was greater in the spot sample predictions (appendix p 13) 
than in 24 h samples from days 1, 2, and 3 of the trial 
(appendix p 12). Where possible, use of 24 h urine samples 
rather than spot samples is advised for measurement of 
metabolic changes, particularly when excretion kinetics 
are not known a priori, partly because spot urine samples 
vary more in dilution. However, where only spot urine 
samples are available because of study limitations, such as 
in the case of the Danish cohort, we found that the time-
matched cumulative sample obtained between meals 
predicted the spot samples with more accuracy than did 
the 24 h model (appendix p 14), which is consistent with 
previous work showing accurate quantifi cation of grape 
intake based on both 24 h samples and cumulative samples 
matching the excretion kinetics window.22 For this reason, 
we compared the spot samples, taken after the fi rst 
morning void in the Danish cohort with the model derived 
from cumulative sample 1 (after breakfast to before lunch) 
(appendix p 11) rather than the 24 h model, because the 
sampling time was better matched.

Our study has several limitations. The metabolic 
profi ling trial and the models derived from it were based 
on limited types of foods. However, even with this narrow 
range of foods, the model clearly classifi ed the diets from 
the corresponding urinary metabolic profi les. To the best 
of our knowledge, this study is the fi rst of its kind to use 
global urinary metabolic profi les to objectively assess 
dietary patterns. However, we recognise that our approach 
will benefi t from additional testing in a wider range of 
populations, including those of disease groups and diverse 
ethnic origins. Additionally, the likely misclassifi cation of 
individuals consuming very high amounts of paracetamol 
and coff ee in our model could be addressed in future work 
by using further analytical chemical profi ling methods to 
avoid peak overlap in the urinary spectra. We anticipate 
that models built from a dataset based on a wider variety of 
foods would give more robust predictions. In this fi rst-in-
human study, we planned to test the hypothesis that 
adherence to diff erent dietary intake patterns could be 
assessed from analysis of the urinary metabolome. With 
this aim in mind, we considered it was important that our 
controlled feeding study was done in healthy individuals to 
minimise the risk that metabolite profi les in urine might 
be confounded by pre-existing disease or concurrent 
medications, both of which are known to aff ect the urinary 
metabolic profi le. The performance of the model in 

populations with non-communicable diseases would be an 
obvious follow-up. Despite these limitations, our models 
were predictive of dietary patterns in two well characterised 
free-living cohorts, thus providing proof of principle that 
this new approach has value as an objective means to 
monitor dietary patterns at the population level. Our model 
showed a clear separation between diets 1 and 4 in the 
global urinary metabolic profi le and individual food-related 
metabolites, even though energy provided by the diets was 
not matched to individual estimated requirements.

Existing methods for dietary assessment—eg, dietary 
diaries (which require coding and data entry), food 
frequency questionnaires, and dietary recalls—are 
expensive (our own estimated cost is £60 for the 
complete analysis, including quality control of a 1 day 
dietary recall by an experienced nutritionist or dietitian). 
Accurate reporting assumes knowledge of food 
ingredients and can involve complex decoding of food 
product labels. Translating our study method into 
clinical practice is a cost-eff ective and time-eff ective 
alternative for objective dietary assessment—the cost is 
roughly £20 per sample for robust analysis by NMR, 
which takes less than 5 min per sample to run 
(excluding sample preparation). This metabolic 
phenotyping strategy circumvents bias caused by 
misreporting and the fact that dietary scoring methods, 
such as DASH scores, can be based on arbitrary 
thresholds. Moreover, similar scores can arise from 
diff erent dietary patterns. The global metabolic profi le, 
consisting of both food-specifi c and general food-
related metabolites, is an unbiased approach and does 
not rely on arbitrary cutoff s. Additionally, the global 
metabolic profi le also allows testing of whether 
metabolites associated with reported foods are found in 
the urine and therefore the accuracy of dietary records.

In conclusion, we showed that urinary metabolic 
profi les developed in a controlled environment have the 
potential to be used to assess adherence to dietary patterns 
in free-living populations without the need to collect 
dietary data. The extension and application of this strategy 
at the population level off er a potential step-change for 
public health nutrition because it provides an objective 
method to survey dietary intakes. Implementation of this 
strategy for urine-based dietary pattern analysis might 
enhance our understanding of the relation between diet 
and health and might improve clinical nutrition practice 
by providing health professionals with objective 
information on adherence to healthy eating guidelines.
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