382 research outputs found

    Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa

    Get PDF
    Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa.Peer reviewe

    As boas práticas dos Sousa na criação bovina em babaçuais: Povoado de São Manoel, Lago do Junco, MA.

    Get PDF
    bitstream/item/214787/1/Mearim-Vol-15.pd

    The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.</p> <p>Results</p> <p>The effect of <it>N</it>-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.</p> <p>Conclusion</p> <p>These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</p

    As boas práticas da família Pereira Santana: Sítio Novo, Lago do Junco, MA.

    Get PDF
    bitstream/item/214780/1/Mearim-Vol-9.pd

    Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean

    Get PDF
    0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Magnetization dynamics of weakly interacting sub-100 nm square artificial spin ices

    Get PDF
    Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions. In this work we have measured and analysed the magnetic relaxation of thermally active ASI systems by means of SQUID magnetometry. We have investigated the effect of the interaction strength on the magnetization dynamics at different temperatures in the range where the nanomagnets are thermally active. We have observed that they follow an Arrhenius-type Néel-Brown behaviour. An unexpected negative correlation of the average blocking temperature with the interaction strength is also observed, which is supported by Monte Carlo simulations. The magnetization relaxation measurements show faster relaxation for more strongly coupled nanoelements with similar dimensions. The analysis of the stretching exponents obtained from the measurements suggest 1-D chain-like magnetization dynamics. This indicates that the nature of the interactions between nanoelements lowers the dimensionality of the ASI from 2-D to 1-D. Finally, we present a way to quantify the effective interaction energy of a square ASI system, and compare it to the interaction energy computed with micromagnetic simulations

    Thermally and field-driven mobility of emergent magnetic charges in square artificial spin ice.

    Get PDF
    Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which the monopole drift velocity is linear in field above a critical field for the onset of motion. The temperature dependence of the critical field can be described by introducing an interaction term into the Bean-Livingston model of field-assisted barrier hopping. By analogy with electrical charge drift motion, we define and measure a monopole mobility that is larger both for higher temperatures and stronger interactions between nanomagnets. The mobility in this linear regime is described by a creep model of zero-dimensional charges moving within a network of quasi-one-dimensional objects

    Microparticles Carrying Sonic Hedgehog Favor Neovascularization through the Activation of Nitric Oxide Pathway in Mice

    Get PDF
    BACKGROUND: Microparticles (MPs) are vesicles released from plasma membrane upon cell activation and during apoptosis. Human T lymphocytes undergoing activation and apoptosis generate MPs bearing morphogen Shh (MPs(Shh+)) that are able to regulate in vitro angiogenesis.METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigated the ability of MPs(Shh+) to modulate neovascularization in a model of mouse hind limb ischemia. Mice were treated in vivo for 21 days with vehicle, MPs(Shh+), MPs(Shh+) plus cyclopamine or cyclopamine alone, an inhibitor of Shh signalling. Laser doppler analysis revealed that the recovery of the blood flow was 1.4 fold higher in MPs(Shh+)-treated mice than in controls, and this was associated with an activation of Shh pathway in muscles and an increase in NO production in both aorta and muscles. MPs(Shh+)-mediated effects on flow recovery and NO production were completely prevented when Shh signalling was inhibited by cyclopamine. In aorta, MPs(Shh+) increased activation of eNOS/Akt pathway, and VEGF expression, being inhibited by cyclopamine. By contrast, in muscles, MPs(Shh+) enhanced eNOS expression and phosphorylation and decreased caveolin-1 expression, but cyclopamine prevented only the effects of MPs(Shh+) on eNOS pathway. Quantitative RT-PCR revealed that MPs(Shh+) treatment increased FGF5, FGF2, VEGF A and C mRNA levels and decreased those of α5-integrin, FLT-4, HGF, IGF-1, KDR, MCP-1, MT1-MMP, MMP-2, TGFβ1, TGFβ2, TSP-1 and VCAM-1, in ischemic muscles. CONCLUSIONS/SIGNIFICANCE: These findings suggest that MPs(Shh+) may contribute to reparative neovascularization after ischemic injury by regulating NO pathway and genes involved in angiogenesis
    corecore