57 research outputs found

    Remotely Sensed Canopy Nitrogen Correlates With Nitrous Oxide Emissions in a Lowland Tropical Rainforest

    Get PDF
    Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote‐sensing image spectroscopy, correlates with patterns of soil N2O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40–70 individual trees) in which average remotely‐sensed canopy N fell above or below the regional mean. The plots were located on a single minimally‐dissected terrace (km2) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three‐fold higher total mean N2O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two‐fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia‐oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant‐available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely‐sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2O emissions in heterogeneous landscapes

    Ghosts of Yellowstone: Multi-Decadal Histories of Wildlife Populations Captured by Bones on a Modern Landscape

    Get PDF
    Natural accumulations of skeletal material (death assemblages) have the potential to provide historical data on species diversity and population structure for regions lacking decades of wildlife monitoring, thereby contributing valuable baseline data for conservation and management strategies. Previous studies of the ecological and temporal resolutions of death assemblages from terrestrial large-mammal communities, however, have largely focused on broad patterns of community composition in tropical settings. Here, I expand the environmental sampling of large-mammal death assemblages into a temperate biome and explore more demanding assessments of ecological fidelity by testing their capacity to record past population fluctuations of individual species in the well-studied ungulate community of Yellowstone National Park (Yellowstone). Despite dramatic ecological changes following the 1988 wildfires and 1995 wolf re-introduction, the Yellowstone death assemblage is highly faithful to the living community in species richness and community structure. These results agree with studies of tropical death assemblages and establish the broad capability of vertebrate remains to provide high-quality ecological data from disparate ecosystems and biomes. Importantly, the Yellowstone death assemblage also correctly identifies species that changed significantly in abundance over the last 20 to ∼80 years and the directions of those shifts (including local invasions and extinctions). The relative frequency of fresh versus weathered bones for individual species is also consistent with documented trends in living population sizes. Radiocarbon dating verifies the historical source of bones from Equus caballus (horse): a functionally extinct species. Bone surveys are a broadly valuable tool for obtaining population trends and baseline shifts over decadal-to-centennial timescales

    Water balance creates a threshold in soil pH at the global scale

    Full text link
    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate

    Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae

    Full text link

    Reviews and syntheses: measuring ecosystem nitrogen status – a comparison of proxies

    No full text
    There are many proxies used to measure nitrogen (N) availability in watersheds, but the degree to which they do (or do not) correlate within a watershed has not been systematically addressed. We surveyed the literature for intact forest or grassland watersheds globally, in which several metrics of nitrogen availability have been measured. Our metrics included the following: foliar δ15N, soil δ15N, net nitrification, net N mineralization, and the ratio of dissolved inorganic to organic nitrogen (DIN : DON) in soil solution and streams. We were particularly interested in whether terrestrial and stream based proxies for N availability were correlated where they were measured in the same place. Not surprisingly, the strongest correlation (Kendall's τ) was between net nitrification and N mineralization (τ  =  0.71, p < 0.0001). Net nitrification and N mineralization were each correlated with foliar and soil δ15N (p < 0.05). Foliar and soil δ15N were more tightly correlated in tropical sites (τ  =  0.68, p < 0.0001), than in temperate sites (τ  =  0.23, p  =  0.02). The only significant correlations between terrestrial- and water-based metrics were those of net nitrification (τ  =  0.48, p  =  0.01) and N mineralization (τ  =  0.69, p  =  0.0001) with stream DIN : DON. The relationship between stream DIN : DON with both net nitrification and N mineralization was significant only in temperate, but not tropical regions. To our surprise, we did not find a significant correlation between soil δ15N and stream DIN : DON, despite the fact that both have been used to infer spatially or temporally integrated N status. Given that both soil δ15N and stream DIN : DON are used to infer long-term N status, their lack of correlation in watersheds merits further investigation

    Ground-based and remotely sensed nutrient availability across a tropical landscape

    No full text
    Tropical soils often are assumed to be highly weathered and thus nutrient-depleted, but this prediction applies primarily to geomorphically stable surfaces. Topography complicates the assumption of nutrient depletion, because erosion can enhance the supply of nutrients to tropical ecosystems. Consequently, understanding nutrient availability across landscapes requires a spatially explicit assessment of the relative strength of depletion and enhancement. We document the relationship between foliar nutrients and topographic position across a 20-km(2), 4- to 5-million-year-old eroded landscape in Kaua'i, Hawai'i, and use this relationship to build a bottom-up map of predicted nutrient availability across this landscape. Only ≈17% of the landscape is nutrient-poor, mostly on stable uplands; nutrient availability on slopes and valley bottoms is much higher, in some cases similar to the most fertile montane forests in the Hawaiian Islands. This pattern was corroborated by top-down remote sensing of area-integrated canopy phosphorus concentrations
    corecore