18 research outputs found

    Geldanamycin and its derivatives as Hsp90 inhibitors

    Get PDF
    The Hsp90 molecule, one of the most abundant heat shock proteins in mammalian cells, maintains homeostasis and prevents stress-induced cellular damage. Hsp90 is expressed under normal conditions at a level of about 1-2 Percent of total proteins, while its expression increases 2-10 fold in cancer cells. The two main constitutively expressed isoforms of Hsp90 are known as Hsp90-alpha and Hsp90-beta, and their upregulation is associated with tumor progression, invasion and formation of metastases, as well as development of drug resistance. The Hsp90 is a key target for many newly established, potent anticancer agents containing Hsp90 N-terminal ATP binding inhibitors, such as geldanamycin, and its analogues 17AAG and 17DMAG. The therapeutic usage of geldanamycin has been limited due to its poor water solubility and severe hepatotoxicity. Therefore, its analogues, including 17AAG, 17DMAG, Tanespimycin and Retaspimycin hydrochloride, with improved pharmacokinetic profiles, have been developed

    Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60)

    Get PDF
    Osteosarcoma is one of the most malignant tumors of childhood and adolescence that is often resistant to standard chemo- and radio-therapy. Geldanamycin and geldanamycin analogs have been recently studied as potential anticancer agents for osteosarcoma treatment. Here, for the first time, we have presented novel anticancer mechanisms of geldanamycin biological activity. Moreover, we demonstrated an association between the effects of geldanamycin on the major heat shock proteins (HSPs) and the overall survival of highly metastatic human osteosarcoma 143B cells. We demonstrated that the treatment of 143B cells with geldanamycin caused a subsequent upregulation of cytoplasmic Hsp90 and Hsp70 whose activity is at least partly responsible for cancer development and drug resistance. On the other hand, geldanamycin induced upregulation of Hsp60 gene expression, and a simultaneous loss of hyperacetylated Hsp60 mitochondrial protein pool resulting in decreased viability and augmented cancer cell death. Hyperacetylation of Hsp60 seems to be associated with anticancer activity of geldanamycin. In light of the fact that mitochondrial dysfunction plays a critical role in the apoptotic signaling pathway, the presented data may support a hypothesis that Hsp60 can be another functional part of mitochondria-related acetylome being a potential target for developing novel anticancer strategies

    The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment

    Get PDF
    To understand the dynamics of antimicrobial resistance (AMR), in a One-Health perspective, surveillance play an important role. Monitoring systems already exist in the human health and livestock sectors, but there are no environmental monitoring programs. Therefore there is an urgent need to initiate environmental AMR monitoring programs nationally and globally, which will complement existing systems in different sectors. However, environmental programs should not only identify anthropogenic influences and levels of AMR, but they should also allow for identification of transmissions to and from human and animal populations. In the current review we therefore propose using antimicrobial resistant Escherichia coli as indicators for monitoring occurrence and levels of AMR in the environment, including wildlife.publishedVersio

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ?-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (< 0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    Tackling antibiotic resistance: the environmental framework

    Get PDF
    Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment

    The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment

    Get PDF
    To understand the dynamics of antimicrobial resistance (AMR), in a One-Health perspective, surveillance play an important role. Monitoring systems already exist in the human health and livestock sectors, but there are no environmental monitoring programs. Therefore there is an urgent need to initiate environmental AMR monitoring programs nationally and globally, which will complement existing systems in different sectors. However, environmental programs should not only identify anthropogenic influences and levels of AMR, but they should also allow for identification of transmissions to and from human and animal populations. In the current review we therefore propose using antimicrobial resistant Escherichia coli as indicators for monitoring occurrence and levels of AMR in the environment, including wildlife
    corecore