13 research outputs found

    Grating-graphene metamaterial as a platform for terahertz nonlinear photonics

    Get PDF
    Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3\cdot108^{-8}m2^2/V2^2, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to \sim1% using a moderate field strength of \sim30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9th^{\rm th} harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications

    Дослідження механічних характеристик матеріалів на базі тугоплавких боридів

    No full text
    The object of research is the effect of sintering under pressure (10 MPa–4.1 GPa) on the formation of the structure and properties of ZrB2, HfB2, and composites on their bases. It has been found that high pressure consolidation results in an improvement of mechanical characteristics. In particular, the hardness and fracture toughness of the materials sintered under 4.1 GPa pressure are higher than those of the materials obtained under hot pressing conditions at 20–30 MPa and spark-plasma sintering at 50 MPa.High-pressure sintered HfB2 demonstrated hardness HV(9.8 N)=21.3±0.8 GPa, HV(49 N)=19.3±1.3 GPa, and HV(98 N)=19.2±0.5 GPa and fracture toughness K1C(49 N)=7.2 MPa·m0.5 and K1C(98 N)=5.7 MPa·m0.5. The HfB2 sintered by hot pressing at 1850 °C and 30 MPa demonstrated hardness: HV(9.8 N)=19.0 GPa, HV(49 N)=18.7 GPa, and HV(98 N)=18.1 GPa, K1C(9.8 N)=7.7 MPa·m0.5, K1C(49 N)=6.6 MPa·m0.5 and K1C(98 N)=5.3 MPa·m0.5. High pressure sintered ZrB2 (a=0.3167 nm, c=0.3528 nm, γ=6.2 g/cm3) demonstrated HV(9.8 N)=17.7±0.6 GPa, HV(49 N)=15.4±1.2 GPa, and HV(98 N)=15.3±0.36 GPa and K1C(9.8 N)=4.3 MPa·m0.5, K1C(49 N)=4.2 MPa·m0.5 and K1C(98 N)=4.0 MPa·m0.5. Addition of 20 wt. % of SiC to ZrB2 and sintering under high pressure (4.1 GPa) allowed essential increase of hardness to HV(9.8 N)=24.2±0.7 GPa, HV(49 N)=16.7±0.5 GPa, and HV(98 N)=17.6±0.4 GPa and fracture toughness to K1C(49 N)=7.1 MPa·m0.5, K1C(98 N)=6.2 MPa·m0.5; the material density was γ=5.03 g/cm3. Additions of SiC and Si3N4 to ZrB2 lead to some increase in fracture toughness (up to K1C(98 N)=9.2 MPa·m0.5).The developed ZrB2- and HfB2-based materials and composites can be used for aerospace applications, in cutting and refractory industries, etc.Объект исследования является влияние спекания под давлением (10 МПа–4,1 ГПа) на формирование структуры и свойства ZrB2, HfB2, а также композитов на их основе. Установлено, что консолидация под высоким давлением приводит к улучшению механических характеристик. В частности, твердость и вязкость разрушения материалов, спеченных под давлением 4,1 ГПа, выше, чем у материалов, полученных в условиях горячего прессования при 20–30 МПа и искроплазменного спекания при 50 МПа.Спеченный под высоким давлением HfB2 демонстрировал твердость HV(9,8 Н)=21,3±0,8 ГПа, HV(49 Н)=19,3±1,3 ГПа, HV(98 Н)=19,2±0,5 ГПа и вязкость разрушения K1C(49 Н)=7,2 MPa·м0,5 и K1C(98 N)=5,7 MPa·м0,5. HfB2, спеченный горячим прессованием при 1850 °C и 30 МПа, демонстрировал твердость: HV (9,8 Н)=19,0 ГПа, HV(49 Н)=18,7 ГПа и HV(98 Н)=18,1 ГПа, K1C(9,8 Н)=7,7 MPa·м0,5, K1C(49 Н)=6,6 MPa·м0,5 и K1C(98 Н)=5,3 MPa·m0,5. Спеченный под высоким давлением ZrB2 (a=0,3167 нм, c=0,3528 нм, γ=6,2 г/см3) демонстрировал HV(9,8 Н)=17,7±0,6 ГПа, HV(49 Н)=15,4±1,2 ГПа и HV(98 Н)=15,3±0,36 ГПа и K1C(9,8 Н)=4,3 MPa·м0,5, K1C(49 Н)=4,2 MPa·м0,5 и K1C(98 Н)=4,0 MPa·м0,5. Добавление 20 мас. % SiC к ZrB2 и спекание под высоким давлением (4,1 ГПа) позволило существенно повысить твердость до HV(9,8 Н)=24,2±0,7 ГПа, HV(49 Н)=16,7±0,5 ГПа и HV(98 Н)=17,6±0,4 ГПа и вязкость разрушения до K1C (49 Н)=7,1 MPa·м0,5, K1C(98 Н)=6,2 MPa·м0,5; плотность материала при этом была γ=5,03 г/см3. Добавление SiC и Si3N4 к ZrB2 приводило к некоторому увеличению вязкости разрушения (до K1C(98 Н)=9,2 MPa·м0,5).Разработанные на основе ZrB2 и HfB2 материалы и композиты могут быть использованы для аэрокосмических применений, в режущей и огнеупорной промышленности и т. д.Об'єктом дослідження є вплив спікання під тиском (10 МПа–4,1 ГПа) на формування структури та властивості ZrB2, HfB2, а також композитів на їх основі. Встановлено, що консолідація під високим тиском приводить до поліпшення механічних характеристик. Зокрема, твердість і в'язкість руйнування матеріалів, спечених під тиском 4,1 ГПа, вищі ніж у матеріалів, отриманих в умовах гарячого пресування при 20–30 МПа та іскроплазменного спікання при 50 МПа.Спечений HfB2 під високим тиском демонстрував твердість HV(9,8 Н)=21,3±0,8 ГПа, HV(49 Н)=19,3±1,3 ГПа та HV(98 Н)=19,2±0,5 ГПа та в'язкість руйнування K1C(49 Н)=7,2 MPa·м0,5 і K1C(98 Н)=5,7 MPa·м0,5. HfB2, спечений методом гарячого пресування при 1850 °C і 30 МПа, демонстрував твердість: HV(9,8 Н)=19,0 ГПа, HV(49 Н)=18,7 ГПа і HV(98 Н)=18,1 ГПа, K1C(9,8 Н)=7,7 MPa·м0,5, K1C(49 Н)=6,6 MPa·м0,5 і K1C(98 Н)=5,3 MPa·м0,5. Спечений ZrB2 під високим тиском (a=0,3167 нм, c=0,3528 нм, γ=6,2 г/см3) продемонстрував HV(9,8 Н)=17,7±0,6 ГПа, HV(49 Н)=15,4±1,2 ГПа та HV(98 Н)=15,3±0,36 ГПа і K1C(9,8 Н)=4,3 MPa·м0,5, K1C(49 Н)=4,2 MPa·м0,5 і K1C(98 Н)=4,0 MPa·м0,5. Додавання 20 мас. % SiC до ZrB2 та спікання під високим тиском (4,1 ГПа) дозволили суттєво збільшити твердість до HV(9,8 Н)=24,2±0,7 ГПа, HV(49 Н)=16,7±0,5 ГПа та HV(98 Н)=17,6±0,4 ГПа і в'язкість руйнування до K1C(49 Н)=7,1 MPa·м0,5, К1С(98 Н)=6,2 MPa·м0,5; щільність матеріалу становила γ=5,03 г/см3. Додавання SiC та Si3N4 до ZrB2 приводить до деякого збільшення в'язкості руйнування (до K1C(98 Н)=9,2 MPa·м0,5).Розроблені матеріали та композити на основі ZrB2 та HfB2 можуть бути використані в аерокосмічній галузі, в різальній та вогнетривкій промисловості тощо

    Вплив нагріву до високих температур на механічні характеристики тугоплавких матеріалів на основі боридів

    No full text
    The object of research is HfB2, ZrB2 and ceramics composition HfB2-30 % SiC and ZrB2-20 % SiC, ZrB2-20 % SiC-4 % Si3N4 obtained under high pressure, their mechanical characteristics before and after heating to high temperatures and temperatures of beginning of melting. The research was conducted in order to create new effective refractory materials for use in the aerospace industry. Therefore, the melting temperatures of sintered materials and the effect of heating on their mechanical properties were also studied. Additives (ZrB2-20 % SiC and HfB2-30 % SiC) although led to a decrease in specific gravity. But increased hardness (by 17 % and 46 % in the case of ZrB2 and HfB2, respectively) and fracture toughness (by 40 % and 21 % in the case of ZrB2 and HfB2, respectively). However, significantly reduced the onset of melting temperature in vacuum to 2150–2160 °C. Materials sintered from ZrB2 and HfB2 was not melted after heating to 2970 °C. After heating to a melting point of 2150–2160 °C (in the case of materials with additives) and to temperatures of 2970 °C (in the case of materials sintered with ZrB2 or HfB2), the hardness and fracture toughness decreased. Thus, the hardness of the material prepared from ZrB2 decreased by 19 % and its fracture toughness – by 18 %, and of that prepared from ZrB2–20 % SiC – by 46 % and 32 %, respectively. The hardness of the material prepared from HfB2 decreased by 46 %, its fracture toughness – by 55 %, and of that prepared from HfB2-30 % SiC, after heating decreased by 40 %, but its fracture toughness increased by 15 %. The sintered HfB2 (with a density of 10.4 g/cm3) before heating showed a hardness of HV(9.8 N)=21.27±0.84 GPa, HV(49 N)=19.29±1.34 and HV(98 N)=19.17±0.5, and fracture toughness K1C(9.8 N)=0.47 MH·m0.5, and ZrB2 with a density of 6.2 g/cm3 was characterized by HV(9.8 N)=17.66±0.60 GPa, HV(49 N)=15.25±1.22 GPa and HV(98 N)=15.32±0.36 GPa, K1C(9.8 N)=4.3 MH·m0.5. Material sintered with HfB2-30 % SiC (density 6.21 g/cm3) had Hv(9.8 N)=38.1±1.4 GPa, HV(49 N)=27.7±2.8 GPa, and K1C(9.8 N)=8.1 MH·m0.5, K1C(49 H)=6.8 MH·m0.5. The sintered with ZrB2-20 % SiC material had density of 5.04 g/cm3, HV(9.8 N)=24.2±1.9 GPa, HV(49 N)=16.7±2.8 GPa, K1C(49 H)=7.1 MH·m0.5. The SiC addition to the initial mixture significantly reduces the elasticity of the materials.Объектом исследования является HfB2, ZrB2 и керамический состав HfB2-30 % SiC и ZrB2-20 % SiC, ZrB2-20 % SiC-4 % Si3N4, полученные под высоким давлением, их механические характеристики до и после нагрева до высоких температур и температур начала плавления. Исследования проводились с целью создания новых эффективных тугоплавких материалов для использования в аэрокосмической промышленности. Поэтому также были исследованы температуры плавления спеченных материалов и влияние нагрева на их механические характеристики. Добавки (ZrB2-20 % SiC и HfB2-30 % SiC) хотя и приводили к уменьшению удельной плотности, но увеличивали твердость (на 17 % и 46 % в случае ZrB2 и HfB2, соответственно) и трещиностойкость (на 40 % и 21 % в случае ZrB2 и HfB2, соответственно). Однако они существенно снижали температуру начала плавления в вакууме до 2150–2160 °С. Материалы, спеченные только из ZrB2 и HfB2, не удалось расплавить и при нагреве до 2970 °С. После нагрева до начала температуры плавления 2150–2160 °С (в случае материалов с добавками) и до температур 2970 °С (в случае материалов, спеченных из ZrB2 или HfB2) твердость и трещиностойкость снижались. Так, твердость материала из ZrB2 уменьшалась на 19 %, трещиностойкость – на 18 %, а, изготовленного из ZrB2-20 % SiC – на 46 % и 32 %, соответственно. Твердость материала из HfB2 уменьшалась на 46 %, трещиностойкость – на 55 %, изготовленного из HfB2-30 % SiC, после нагрева уменьшалась на 40 %, однако трещиностойкость росла на 15 %. Спеченный HfB2 (с плотностью 10,4 г/см3) до нагрева демонстрировал твердость HV(9,8 Н)=21,27±0,84 ГПа, HV(49 Н)=19,29±1,34 и HV(98 Н)=19,17±0,5, и трещиностойкость K1C(9,8 Н)=6,47 MН·м0.5, а ZrB2 плотностью 6,2 г/см3 характеризовался HV(9,8 Н)=17,66±0,60 ГПа, HV(49 Н)=15,25±1,22 ГПа и HV(98 Н)=15,32±0,36 ГПа, K1C(9,8 Н)=4,3 MН·м0.5. Материал, спеченный из HfB2-30 % SiC (плотностью 6,21 г/см3), имел HV(9,8 Н)=38,1±1,4 ГПа, HV(49 Н)=27,7±2,8 ГПа, а K1C(9,8 Н)=8,1 MН·м0.5, K1C(49 Н)=6,8 MН·м0.5. Cпеченный из ZrB2-20 % SiC материал имел плотность 5,04 г/см3, HV(9,8 Н)=24,2±1,9 ГПа, HV(49 Н)=16,7±2,8 ГПа, K1C(49 Н)=7,1 MН·м0.5. Добавление SiC в исходную смесь значительно снижает эластичность материалов.Об'єктом дослідження є HfB2, ZrB2 та керамічний склад HfB2-30 % SiC та ZrB2-20 % SiC, ZrB2-20 % SiC-4 % Si3N4, отримані під високим тиском, їх механічні характеристики до та після нагріву до високих температур та температур початку плавлення. Дослідження направлене на створення нових ефективних тугоплавких матеріалів для використання в аерокосмічній промисловості. Тому також були досліджені температури плавлення спечених матеріалів і вплив нагріву на їх механічні характеристики. Добавки (ZrB2-20 % SiC та HfB2-30 % SiC) хоча і приводили до зменшення питомої густини, але збільшували твердість (на 17 % і 46 % у випадку ZrB2 та HfB2, відповідно) та тріщиностійкість (на 40 % і 21 % у випадку ZrB2 та HfB2, відповідно). Однак вони істотно знижували температуру початку плавлення у вакуумі до 2150–2160 °С. Матеріали, спечені тільки з ZrB2 та HfB2, не вдалося розплавити і при нагріві до 2970 °С. Після нагріву до початку температури плавлення 2150–2160 °С (у випадку матеріалів з добавками) і до температур 2970 °С (у випадку матеріалів, спечених з ZrB2 або HfB2) твердість і тріщиностійкість зменшувались. Так, твердість матеріалу з ZrB2 зменшувалась на 19 %, тріщиностійкість – на 18 %, а, виготовленого з ZrB2-20 % SiC, – на 46 % і 32 %, відповідно. Твердість матеріалу з HfB2 зменшувалась на 46 %, тріщиностійкість – на 55 %, а виготовленого з HfB2-30 % SiC після нагріву зменшувалась на 40 %, однак тріщиностійкість зростала на 15 %. Спечений HfB2 (з густиною 10,42 г/см3) до нагріву демонстрував твердість HV(9,8 Н)=21,27±0,84 ГПа, HV(49 Н)=19,29±1,34 і HV(98 Н)=19,17±0,5, і тріщиностійкість K1C(9,8 Н)=6,47 MН·м0.5, а ZrB2 густиною 6,2 г/см3 характеризувався HV(9,8 Н)=17,66±0,60 ГПа, HV(49 Н)=15,25±1,22 ГПа і HV(98 Н)=15,32±0,36 ГПа, K1C(9,8 Н)=4,3 MН·м0.5. Матеріал, спечений з HfB2-30 % SiC (густиною 6,21 г/см3), мав Hv(9,8 Н)=38,1±1,4 ГПа, HV(49 Н)=27,7±2,8 ГПа, а K1C(9,8 Н)=8,1 MН·м0.5, K1C(49 Н)=6,8 MН·м0.5. Спечений з ZrB2–20 % SiC матеріал мав густину 5,04 г/см3, HV(9,8 Н)=24,2±1,9 ГПа, HV(49 Н)=16,7±2,8 ГПа, K1C(49 Н)=7,1 MН·м0.5. Додавання SiC до вихідної суміші значно знижує еластичність матеріалі

    Investigation of Mechanical Characteristics of Materials Based on Refractory Borides

    Full text link
    The object of research is the effect of sintering under pressure (10 MPa–4.1 GPa) on the formation of the structure and properties of ZrB2, HfB2, and composites on their bases. It has been found that high pressure consolidation results in an improvement of mechanical characteristics. In particular, the hardness and fracture toughness of the materials sintered under 4.1 GPa pressure are higher than those of the materials obtained under hot pressing conditions at 20–30 MPa and spark-plasma sintering at 50 MPa.High-pressure sintered HfB2 demonstrated hardness HV(9.8 N)=21.3±0.8 GPa, HV(49 N)=19.3±1.3 GPa, and HV(98 N)=19.2±0.5 GPa and fracture toughness K1C(49 N)=7.2 MPa·m0.5 and K1C(98 N)=5.7 MPa·m0.5. The HfB2 sintered by hot pressing at 1850 °C and 30 MPa demonstrated hardness: HV(9.8 N)=19.0 GPa, HV(49 N)=18.7 GPa, and HV(98 N)=18.1 GPa, K1C(9.8 N)=7.7 MPa·m0.5, K1C(49 N)=6.6 MPa·m0.5 and K1C(98 N)=5.3 MPa·m0.5. High pressure sintered ZrB2 (a=0.3167 nm, c=0.3528 nm, γ=6.2 g/cm3) demonstrated HV(9.8 N)=17.7±0.6 GPa, HV(49 N)=15.4±1.2 GPa, and HV(98 N)=15.3±0.36 GPa and K1C(9.8 N)=4.3 MPa·m0.5, K1C(49 N)=4.2 MPa·m0.5 and K1C(98 N)=4.0 MPa·m0.5. Addition of 20 wt. % of SiC to ZrB2 and sintering under high pressure (4.1 GPa) allowed essential increase of hardness to HV(9.8 N)=24.2±0.7 GPa, HV(49 N)=16.7±0.5 GPa, and HV(98 N)=17.6±0.4 GPa and fracture toughness to K1C(49 N)=7.1 MPa·m0.5, K1C(98 N)=6.2 MPa·m0.5; the material density was γ=5.03 g/cm3. Additions of SiC and Si3N4 to ZrB2 lead to some increase in fracture toughness (up to K1C(98 N)=9.2 MPa·m0.5).The developed ZrB2- and HfB2-based materials and composites can be used for aerospace applications, in cutting and refractory industries, etc

    Investigation of Mechanical Characteristics of Materials Based on Refractory Borides

    Full text link
    The object of research is the effect of sintering under pressure (10 MPa–4.1 GPa) on the formation of the structure and properties of ZrB2, HfB2, and composites on their bases. It has been found that high pressure consolidation results in an improvement of mechanical characteristics. In particular, the hardness and fracture toughness of the materials sintered under 4.1 GPa pressure are higher than those of the materials obtained under hot pressing conditions at 20–30 MPa and spark-plasma sintering at 50 MPa.High-pressure sintered HfB2 demonstrated hardness HV(9.8 N)=21.3±0.8 GPa, HV(49 N)=19.3±1.3 GPa, and HV(98 N)=19.2±0.5 GPa and fracture toughness K1C(49 N)=7.2 MPa·m0.5 and K1C(98 N)=5.7 MPa·m0.5. The HfB2 sintered by hot pressing at 1850 °C and 30 MPa demonstrated hardness: HV(9.8 N)=19.0 GPa, HV(49 N)=18.7 GPa, and HV(98 N)=18.1 GPa, K1C(9.8 N)=7.7 MPa·m0.5, K1C(49 N)=6.6 MPa·m0.5 and K1C(98 N)=5.3 MPa·m0.5. High pressure sintered ZrB2 (a=0.3167 nm, c=0.3528 nm, γ=6.2 g/cm3) demonstrated HV(9.8 N)=17.7±0.6 GPa, HV(49 N)=15.4±1.2 GPa, and HV(98 N)=15.3±0.36 GPa and K1C(9.8 N)=4.3 MPa·m0.5, K1C(49 N)=4.2 MPa·m0.5 and K1C(98 N)=4.0 MPa·m0.5. Addition of 20 wt. % of SiC to ZrB2 and sintering under high pressure (4.1 GPa) allowed essential increase of hardness to HV(9.8 N)=24.2±0.7 GPa, HV(49 N)=16.7±0.5 GPa, and HV(98 N)=17.6±0.4 GPa and fracture toughness to K1C(49 N)=7.1 MPa·m0.5, K1C(98 N)=6.2 MPa·m0.5; the material density was γ=5.03 g/cm3. Additions of SiC and Si3N4 to ZrB2 lead to some increase in fracture toughness (up to K1C(98 N)=9.2 MPa·m0.5).The developed ZrB2- and HfB2-based materials and composites can be used for aerospace applications, in cutting and refractory industries, etc

    Structure and Properties of MgB2: Effect of Ti-O and TiC Additions

    No full text
    IEEE The effects of the additions of powdered titanium carbide (TiC) and polyvalent titanium oxides (Ti-O) to MgB2 (synthesized under high pressure (2 GPa)-high temperature (800 and 1050 & #x00B0;C) conditions) on the critical current density, jc, critical magnetic fields, BC2 and Birr, and the related transformations in the materials structures are reported. The superconducting characteristics are compared with that of MgB2 with titanium (Ti) additions synthesized under the same conditions. The synthesis temperature, the ability of Ti-containing compounds to act as a getter, and the different diffusion rates of Mg and B into grains of these additions influence the distribution of the elements (boron, magnesium and impurity oxygen) in the structures of MgB2-based materials. This in turn affects the formation of pinning centers, the resulting flux pinning and eventually the superconducting properties (jc, BC2, Birr)
    corecore