347 research outputs found

    Neutral perfect fluids of Majumdar-type in general relativity

    Full text link
    We consider the extension of the Majumdar-type class of static solutions for the Einstein-Maxwell equations, proposed by Ida to include charged perfect fluid sources. We impose the equation of state ρ+3p=0\rho+3p=0 and discuss spherically symmetric solutions for the linear potential equation satisfied by the metric. In this particular case the fluid charge density vanishes and we locate the arising neutral perfect fluid in the intermediate region defined by two thin shells with respective charges QQ and Q-Q. With its innermost flat and external (Schwarzschild) asymptotically flat spacetime regions, the resultant condenser-like geometries resemble solutions discussed by Cohen and Cohen in a different context. We explore this relationship and point out an exotic gravitational property of our neutral perfect fluid. We mention possible continuations of this study to embrace non-spherically symmetric situations and higher dimensional spacetimes.Comment: 9 page

    Tinea nigra by Hortaea werneckii, a report of 22 cases from Mexico

    Get PDF
    Tinea nigra is a superficial mycosis caused by Hortaea werneckii. It is an infrequent asymptomatic infection that affects human palms and soles, and is mostly observed in tropical countries. We evaluate retrospectively twenty-two confirmed cases of tinea nigra from a total of eleven yr (1997–2007) and discuss the epidemiology, clinical features and treatment of this disease. In twelve cases, adults were involved, in 10, children. In nineteen cases the disorder was located on palms of hands and in three on soles of feet. In all cases, the obtained isolates were morphologically identified as Hortaea werneckii and the identification of ten isolates was retrospectively confirmed with the help of sequences of the internal transcribed spacer regions of the ribosomal DNA. The patients received topical treatment with Whitfield ointment, ketoconazole, bifonazole, or terbinafine. Treatment with keratolytic agents and topical antifungals was effective

    Experimental Tests of Factorization in Charmless Non-Leptonic Two-Body B Decays

    Get PDF
    Using a theoretical framework based on the next-to-leading order QCD-improved effective Hamiltonian and a factorization Ansatz for the hadronic matrix elements of the four-quark operators, we reassess branching fractions in two-body non-leptonic decays BPP,PV,VVB \to PP, PV, VV, involving the lowest lying light pseudoscalar (P)(P) and vector (V)(V) mesons in the standard model. Using the sensitivity of the decay rates on the effective number of colors, NcN_c, as a criterion of theoretical predictivity, we classify all the current-current (tree) and penguin transitions in five different classes. The recently measured charmless two-body BPPB \to PP decays (B+K+η,B0K0η,B0K+π,B+π+K0(B^+ \to K^+ \eta^\prime, B^0 \to K^0 \eta^\prime, B^0 \to K^+\pi^-, B^+ \to \pi^+ K^0 and charge conjugates) are dominated by the NcN_c-stable QCD penguins (class-IV transitions) and their estimates are consistent with data. The measured charmless BPVB \to PV (B+ωK+, B+ωh+)(B^+ \to \omega K^+, ~B^+ \to \omega h^+) and BVVB\to VV transition (BϕK)(B \to \phi K^*), on the other hand, belong to the penguin (class-V) and tree (class-III) transitions. The class-V penguin transitions are in general more difficult to predict. We propose a number of tests of the factorization framework in terms of the ratios of branching ratios for some selected Bh1h2B \to h_1 h_2 decays involving light hadrons h1h_1 and h2h_2, which depend only moderately on the form factors. We also propose a set of measurements to determine the effective coefficients of the current-current and QCD penguin operators. The potential impact of Bh1h2B \to h_1 h_2 decays on the CKM phenomenology is emphasized by analyzing a number of decay rates in the factorization framework.Comment: 64 pages (LaTex) including 13 figures, requires epsfig.sty; submitted to Phys. Rev.

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore