184 research outputs found

    TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration

    Get PDF
    It is well-established that the kidney collecting duct (CD) plays a central role in regulation of systemic water homeostasis. Aquaporin 2 (AQP2)-dependent water reabsorption in the CD critically depends on the arginine vasopressin (AVP) antidiuretic input and the presence of a favorable osmotic gradient at the apical plasma membrane with tubular lumen being hypotonic compared to the cytosol. This osmotic difference creates a mechanical force leading to an increase in [Ca2+]i in CD cells. The significance of the osmosensitive [Ca2+]i signaling for renal water transport and urinary concentration remain unknown. To examine molecular mechanism and physiological relevance of osmosensitivity in the CD, we implemented simultaneous direct measurements of [Ca2+]i dynamics and the rate of cell swelling as a readout of the AQP2-dependent water reabsorption in freshly isolated split-opened CDs of wild type and genetically manipulated animals and combined this with immunofluorescent detection of AVP-induced AQP2 trafficking and assessment of systemic water balance. We identified the critical role of the Ca2+-permeable TRPC3 channel in osmosensitivity and water permeability in the CD. We further demonstrated that TRPC3 -/- mice exhibit impaired urinary concentration, larger urinary volume and a greater weight loss in response to water deprivation despite increased AVP levels and AQP2 abundance. TRPC3 deletion interfered with AQP2 translocation to the plasma membrane in response to water deprivation. In summary, we provide compelling multicomponent evidence in support of a critical contribution of TRPC3 in the CD for osmosensitivity and renal water handling.Fil: Tomilin, Viktor N.. University of Texas; Estados UnidosFil: Mamenko, Mykola. Augusta University; Estados UnidosFil: Zaika, Oleg. University of Texas; Estados UnidosFil: Ren, Guohui. University of Texas; Estados UnidosFil: Marrelli, Sean P.. University of Texas; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Pochynyuk, Oleh. University of Texas; Estados Unido

    Molecular Determinants of PI(4,5)P2 and PI(3,4,5)P3 Regulation of the Epithelial Na+ Channel

    Get PDF
    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na+ channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P3 and PI(4,5)P2 to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in β- and γ- but not α-ENaC as necessary for PI(3,4,5)P2 but not PI(4,5)P2 modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in β- and γ-ENaC are critical to PI(3,4,5)P3 augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of β- and γ-ENaC were identified as being critical to down-regulation of ENaC activity and Po in response to depletion of membrane PI(4,5)P2. These regions of the channel played no identifiable role in a PI(3,4,5)P3 response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P2 to increase open probability. We conclude that β and γ subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P3 and PI(4,5)P2. This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability

    The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice

    Get PDF
    In the kidney, purinergic (P2) receptor-mediated ATP signaling has been shown to be an important local regulator of epithelial sodium transport. Appropriate sodium regulation is crucial for blood pressure (BP) control and disturbances in sodium balance can lead to hypo- or hypertension. Links have already been established between P2 receptor signaling and the development of hypertension, attributed mainly to vascular and/or inflammatory effects. A transgenic mouse model with deletion of the P2X4 receptor (P2X4-/-) is known to have hypertension, which is thought to reflect endothelial dysfunction and impaired nitric oxide (NO) release. However, renal function in this model has not been characterized; moreover, studies in vitro have shown that the P2X4 receptor can regulate renal epithelial Na+ channel (ENaC) activity. Therefore, in the present study we investigated renal function and sodium handling in P2X4-/- mice, focusing on ENaC-mediated Na+ reabsorption. We confirmed an elevated BP in P2X4-/- mice compared with wild-type mice, but found that ENaC-mediated Na+ reabsorption is no different from wild-type and does not contribute to the raised BP observed in the knockout. However, when P2X4-/- mice were placed on a low sodium diet, BP normalized. Plasma aldosterone concentration tended to increase according to sodium restriction status in both genotypes; in contrast to wild-types, P2X4-/- mice did not increase in functional ENaC activity. Thus, although the increased BP in P2X4-/- mice has been attributed to endothelial dysfunction and impaired NO release, there is also a sodium-sensitive component

    Emerging role of the calcium-activated, small conductance, SK3 K <sup>+</sup> channel in distal tubule function: Regulation by TRPV4

    Get PDF
    The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K + channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+- dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+- affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion. © 2014 Berrout et al

    Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulation of the expression/shuttling of the aquaporin-2 water channel (AQP2) and the epithelial sodium channel (ENaC) in renal collecting duct principal cells has been found in animal models of hypertension. We tested whether a similar dysregulation exists in essential hypertension.</p> <p>Methods</p> <p>We measured urinary excretion of AQP2 and ENaC β-subunit corrected for creatinine (u-AQP2<sub>CR</sub>, u-ENaC<sub>β-CR</sub>), prostaglandin E2 (u-PGE<sub>2</sub>) and cyclic AMP (u-cAMP), fractional sodium excretion (FE<sub>Na</sub>), free water clearance (C<sub>H2O</sub>), as well as plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (Ang II), aldosterone (Aldo), and atrial and brain natriuretic peptide (ANP, BNP) in 21 patients with essential hypertension and 20 normotensive controls during 24-h urine collection (baseline), and after hypertonic saline infusion on a 4-day high sodium (HS) diet (300 mmol sodium/day) and a 4-day low sodium (LS) diet (30 mmol sodium/day).</p> <p>Results</p> <p>At baseline, no differences in u-AQP2<sub>CR </sub>or u-ENaC<sub>β-CR </sub>were measured between patients and controls. U-AQP2<sub>CR </sub>increased significantly more after saline in patients than controls, whereas u-ENaC<sub>β-CR </sub>increased similarly. The saline caused exaggerated natriuretic increases in patients during HS intake. Neither baseline levels of u-PGE<sub>2</sub>, u-cAMP, AVP, PRC, Ang II, Aldo, ANP, and BNP nor changes after saline could explain the abnormal u-AQP2<sub>CR </sub>response.</p> <p>Conclusions</p> <p>No differences were found in u-AQP2<sub>CR </sub>and u-ENaC<sub>β-CR </sub>between patients and controls at baseline. However, in response to saline, u-AQP2<sub>CR </sub>was abnormally increased in patients, whereas the u-ENaC<sub>β-CR </sub>response was normal. The mechanism behind the abnormal AQP2 regulation is not clarified, but it does not seem to be AVP-dependent.</p> <p>Clinicaltrial.gov identifier</p> <p><a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=00345124">NCT00345124</a>.</p

    Primary aldosteronism and impaired natriuresis in mice underexpressing TGF 1

    Get PDF
    To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor β1 (TGFβ1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na+, K+-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function

    Pharmacological Properties and Physiological Function of a P2X-Like Current in Single Proximal Tubule Cells Isolated from Frog Kidney

    Get PDF
    Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2Xf) that was also Ca2+-permeable. The agonist sequence for activation was ATP = αβ-MeATP > BzATP = 2-MeSATP, and P2Xf was inhibited by suramin, PPADS and TNP-ATP. Activation of P2Xf attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2Xf plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2Xf inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells

    Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Get PDF
    Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites
    corecore