80 research outputs found
A Computer Modelling Approach To Evaluate the Accuracy of Microsatellite Markers for Classification of Recurrent Infections during Routine Monitoring of Antimalarial Drug Efficacy
Anti-malarial drugs have long half-lives, so clinical trials to monitor their efficacy require long durations of follow-up to capture drug failure that may only become patent weeks after treatment. Reinfections often occur during follow-up so robust methods of distinguishing drug failures (recrudescence) from emerging new infections are needed to produce accurate failure rate estimates. "Molecular correction" aims to achieve this by comparing the genotypes between a patient's pre-treatment (initial) blood sample and any infection that occurs during follow-up, 'matching' genotypes indicating a drug failure. We use an in-silico approach to show that the widely used "match counting" method of molecular correction with microsatellite markers is likely to be highly unreliable and may lead to gross under- or over-estimates of true failure rates depending on the choice of matching criterion. A Bayesian algorithm for molecular correction has been previously developed and utilized for analysis of in vivo efficacy trials. We validated this algorithm using in silico data and showed it had high specificity and generated accurate failure rate estimates. This conclusion was robust for multiple drugs, different levels of drug failure rate, different levels of transmission intensity in the study sites, and microsatellite genetic diversity. The Bayesian algorithm was inherently unable to accurately identify low-density recrudescence that occurred in a small number of patients, but this did not appear to compromise its utility as a highly effective molecular correction method for analysing microsatellite genotypes. Strong consideration should be given to using Bayesian methodology for obtaining accurate failure rate estimates during routine monitoring trials of antimalarial efficacy that use microsatellite marker
Variation in Calculating and Reporting Antimalarial Efficacy against Plasmodium falciparum in Sub-Saharan Africa: A Systematic Review of Published Reports
Antimalarials, in particular artemisinin-based combination therapies (ACTs), are critical tools in reducing
the global burden of malaria, which is concentrated in sub-Saharan Africa. Performing and reporting antimalarial
efficacy studies in a transparent and standardized fashion permit comparison of efficacy outcomes across countries
and time periods. This systematic review summarizes study compliance with WHO laboratory and reporting guidance
pertaining to antimalarial therapeutic efficacy studies and evaluates how well studies from sub-Saharan Africa adhered
to these guidelines. We included all published studies (January 2020 or before) performed in sub-Saharan Africawhere
ACT efficacy for treatment of uncomplicated Plasmodium falciparum infectionwas reported. The primary outcomewas
a composite indicator for study methodology consistent with WHO guidelines for statistical analysis of corrected
efficacy, defined as an article presenting a Kaplan–Meier survival analysis of corrected efficacy or reporting a perprotocol
analysis where new infections were excluded from the numerator and denominator. Of 581 articles screened,
we identified 279 for the review. Molecular correction was used in 83% (232/279) to distinguish new infections from
recrudescences in subjects experiencing recurrent parasitemia. Only 45% (99/221) of articles with therapeutic efficacy
as a primary outcome and performing molecular correction reported corrected efficacy outcomes calculated in a way
consistent with WHO recommendations. These results indicate a widespread lack of compliance with WHOrecommendedmethods
of analysis, whichmay result in biases in how antimalarial effectiveness is being measured and
reported from sub-Saharan Africa
Sleeping arrangements and mass distribution of bed nets in six districts in central and northern Mozambique
OBJECTIVE: Universal coverage with insecticide-treated bed nets
is a cornerstone of modern malaria control. Mozambique has
developed a novel bed net allocation strategy, where the number
of bed nets allocated per household is calculated on the basis
of household composition and assumptions about who sleeps with
whom. We set out to evaluate the performance of the novel
allocation strategy. METHODS: 1,994 households were visited
during household surveys following two universal coverage bed
net distribution campaigns in Sofala and Nampula Provinces in
2010-2013. Each sleeping space was observed for the presence of
a bed net, and the sleeping patterns for each household were
recorded. The observed coverage and efficiency were compared to
a simulated coverage and efficiency had conventional allocation
strategies been used. A composite indicator, the product of
coverage and efficiency, was calculated. Observed sleeping
patterns were compared with the sleeping pattern assumptions.
RESULTS: In households reached by the campaign, 93% (95% CI:
93-94%) of sleeping spaces in Sofala and 84% (82-86%) in Nampula
were covered by campaign bed nets. The achieved efficiency was
high, with 92% (91-93%) of distributed bed nets in Sofala and
93% (91-95%) in Nampula covering a sleeping space. Using the
composite indicator, the novel allocation strategy outperformed
all conventional strategies in Sofala and was tied for best in
Nampula. The sleeping pattern assumptions were completely
satisfied in 66% of households in Sofala and 56% of households
in Nampula. The most common violation of the sleeping pattern
assumptions was that male children 3-10 years of age tended not
to share sleeping spaces with female children 3-10 or 10-16
years of age. CONCLUSIONS: The sleeping pattern assumptions
underlying the novel bed net allocation strategy are generally
valid, and net allocation using these assumptions can achieve
high coverage and compare favorably with conventional allocation
strategies. This article is protected by copyright. All rights
reserved
Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo.
BACKGROUND: Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets (LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resistance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known. Therefore, the intensity of resistance of Anopheles gambiae sensu lato (s.l.) to permethrin and deltamethrin was monitored before and after a mass distribution of LLINs in Kinshasa in December 2016, and in 6 other sites across the country in 2017 and 11 sites in 2018. METHODS: In Kinshasa, CDC bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and deltamethrin were conducted using An. gambiae s.l. collected as larvae and reared to adults. Bioassays were conducted in four sites in Kinshasa province 6Â months before a mass distribution of deltamethrin-treated LLINs and then two, six, and 10Â months after the distribution. One site in neighbouring Kongo Central province was used as a control (no mass campaign of LLIN distribution during the study). Nationwide intensity assays were conducted in six sites in 2017 using CDC bottle bioassays and in 11 sites in 2018 using WHO intensity assays. A sub-sample of An. gambiae s.l. was tested by PCR to determine species composition and frequency of kdr-1014F and 1014S alleles. RESULTS: In June 2016, before LLIN distribution, permethrin resistance intensity was high in Kinshasa; the mean mortality rate was 43% at the 5Ă— concentration and 73% at the 10Ă— concentration. Bioassays at 3 time points after LLIN distribution showed considerable variation by site and time and there was no consistent evidence for an increase in pyrethroid resistance intensity compared to the neighbouring control site. Tests of An. gambiae s.l. in 6 sites across the country in 2017 and 11 sites in 2018 showed all populations were resistant to the diagnostic doses of 3 pyrethroids. In 2018, the intensity of resistance varied by site, but was generally moderate for all three pyrethroids, with survivors at Ă—5 the diagnostic dose. Anopheles gambiae sensu stricto (s.s.) was the most common species identified across 11 sites in DRC, but in Kinshasa, An. gambiae s.s. (91%) and Anopheles coluzzii (8%) were sympatric. CONCLUSIONS: Moderate or high intensity pyrethroid resistance was detected nationwide in DRC and is a serious threat to sustained malaria control with pyrethroid LLINs. Next generation nets (PBO nets or bi-treated nets) should be considered for mass distribution
Therapeutic response to four artemisinin-based combination therapies in Angola, 2021
Publisher Copyright: Copyright © 2024 Dimbu et al.Monitoring antimalarial efficacy is important to detect the emergence of parasite drug resistance. Angola conducts in vivo therapeutic efficacy studies (TESs) every 2 years in its fixed sentinel sites in Benguela, Lunda Sul, and Zaire provinces. Children with uncomplicated Plasmodium falciparum malaria were treated with artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), dihydroartemisinin-piperaquine (DP), or artesunate-pyronaridine (ASPY) and followed for 28 (AL and ASAQ) or 42 days (DP and ASPY) to assess clinical and parasitological response to treatment. Two drugs were sequentially assessed in each site in February-July 2021. The primary indicator was the Kaplan-Meier estimate of the PCR-corrected efficacy at the end of the follow-up period. A total of 622 patients were enrolled in the study and 590 (95%) participants reached a study endpoint. By day 3, ≥98% of participants were slide-negative in all study sites and arms. After PCR correction, day 28 AL efficacy was 88.0% (95% CI: 82%-95%) in Zaire and 94.7% (95% CI: 90%-99%) in Lunda Sul. For ASAQ, day 28 efficacy was 92.0% (95% CI: 87%-98%) in Zaire and 100% in Lunda Sul. Corrected day 42 efficacy was 99.6% (95% CI: 99%-100%) for ASPY and 98.3% (95% CI: 96%-100%) for DP in Benguela. High day 3 clearance rates suggest no clinical evidence of artemisinin resistance. This was the fourth of five rounds of TES in Angola showing a corrected AL efficacy <90% in a site. For Zaire, AL has had an efficacy <90% in 2013, 2015, and 2021. ASAQ, DP, and ASPY are appropriate choices as artemisinin-based combination therapies in Angola.publishersversionpublishe
Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017
Background
The Angolan government recommends three artemisinin-based combinations for the treatment of uncomplicated Plasmodium falciparum malaria: artemether–lumefantrine (AL), artesunate–amodiaquine (ASAQ), and dihydroartemisinin–piperaquine (DP). Due to the threat of emerging anti-malarial drug resistance, it is important to periodically monitor the efficacy of artemisinin-based combination therapy (ACT). This study evaluated these medications’ therapeutic efficacy in Benguela, Lunda Sul, and Zaire Provinces.
Methods
Enrollment occurred between March and July 2017. Study participants were children with P. falciparum monoinfection from each provincial capital. Participants received a 3-day course of a quality-assured artemisinin-based combination and were monitored for 28 (AL and ASAQ arms) or 42Â days (DP arm). Each ACT was assessed in two provinces. The primary study endpoints were: (1) follow-up without complications and (2) failure to respond to treatment or development of recurrent P. falciparum infection. Parasites from each patient experiencing recurrent infection were genotyped to differentiate new infection from recrudescence of persistent parasitaemia. These parasites were also analysed for molecular markers associated with ACT resistance.
Results
Of 608 children enrolled in the study, 540 (89%) reached a primary study endpoint. Parasitaemia was cleared within 3 days of medication administration in all participants, and no early treatment failures were observed. After exclusion of reinfections, the corrected efficacy of AL was 96% (91–100%, 95% confidence interval) in Zaire and 97% (93–100%) in Lunda Sul. The corrected efficacy of ASAQ was 100% (97–100%) in Benguela and 93% (88–99%) in Zaire. The corrected efficacy of DP was 100% (96–100%) in Benguela and 100% in Lunda Sul. No mutations associated with artemisinin resistance were identified in the pfk13 gene in the 38 cases of recurrent P. falciparum infection. All 33 treatment failures in the AL and ASAQ arms carried pfmdr1 or pfcrt mutations associated with lumefantrine and amodiaquine resistance, respectively, on day of failure.
Conclusions
AL, ASAQ, and DP continue to be efficacious against P. falciparum malaria in these provinces of Angola. Rapid parasite clearance and the absence of genetic evidence of artemisinin resistance are consistent with full susceptibility to artemisinin derivatives. Periodic monitoring of in vivo drug efficacy remains a priority routine activity for Angola
Conventional and High-Sensitivity Malaria Rapid Diagnostic Test Performance in 2 Transmission Settings: Haiti 2017.
Accurate malaria diagnosis is foundational for control and elimination, and Haiti relies on histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs) identifying Plasmodium falciparum in clinical and community settings. In 2017, 1 household and 2 easy-access group surveys tested all participants (N = 32 506) by conventional and high-sensitivity RDTs. A subset of blood samples (n = 1154) was laboratory tested for HRP2 by bead-based immunoassay and for P. falciparum 18S rDNA by photo-induced electron transfer polymerase chain reaction. Both RDT types detected low concentrations of HRP2 with sensitivity estimates between 2.6 ng/mL and 14.6 ng/mL. Compared to the predicate HRP2 laboratory assay, RDT sensitivity ranged from 86.3% to 96.0% between tests and settings, and specificity from 90.0% to 99.6%. In the household survey, the high-sensitivity RDT provided a significantly higher number of positive tests, but this represented a very small proportion (<0.2%) of all participants. These data show that a high-sensitivity RDT may have limited utility in a malaria elimination setting like Haiti
The Effectiveness of Non-pyrethroid Insecticide-treated Durable Wall Lining to Control Malaria in Rural Tanzania: Study Protocol for a Two-armed Cluster Randomized Trial.
Despite considerable reductions in malaria achieved by scaling-up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), maintaining sustained community protection remains operationally challenging. Increasing insecticide resistance also threatens to jeopardize the future of both strategies. Non-pyrethroid insecticide-treated wall lining (ITWL) may represent an alternate or complementary control method and a potential tool to manage insecticide resistance. To date no study has demonstrated whether ITWL can reduce malaria transmission nor provide additional protection beyond the current best practice of universal coverage (UC) of LLINs and prompt case management. A two-arm cluster randomized controlled trial will be conducted in rural Tanzania to assess whether non-pyrethroid ITWL and UC of LLINs provide added protection against malaria infection in children, compared to UC of LLINs alone. Stratified randomization based on malaria prevalence will be used to select 22 village clusters per arm. All 44 clusters will receive LLINs and half will also have ITWL installed on interior house walls. Study children, aged 6Â months to 11Â years old, will be enrolled from each cluster and followed monthly to estimate cumulative incidence of malaria parasitaemia (primary endpoint), time to first malaria episode and prevalence of anaemia before and after intervention. Entomological inoculation rate will be estimated using indoor CDC light traps and outdoor tent traps followed by detection of Anopheles gambiae species, sporozoite infection, insecticide resistance and blood meal source. ITWL bioefficacy and durability will be monitored using WHO cone bioassays and household surveys, respectively. Social and cultural factors influencing community and household ITWL acceptability will be explored through focus-group discussions and in-depth interviews. Cost-effectiveness, compared between study arms, will be estimated per malaria case averted. This protocol describes the large-scale evaluation of a novel vector control product, designed to overcome some of the known limitations of existing methods. If ITWL is proven to be effective and durable under field conditions, it may warrant consideration for programmatic implementation, particularly in areas with long transmission seasons and where pyrethroid-resistant vectors predominate. Trial findings will provide crucial information for policy makers in Tanzania and other malaria-endemic countries to guide resource allocations for future control efforts
Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data
Background: Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia.
Methods: Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7.
Results: A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0–19.7 g/dL) in Africa, 11.6 g/dL (range 5.0–20.0 g/dL) in Asia and 12.3 g/dL (range 6.9–17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39–3.05], p < 0.001).
Conclusions: In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery
- …