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Abstract 

Background: Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets 
(LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resist-
ance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known. 
Therefore, the intensity of resistance of Anopheles gambiae sensu lato (s.l.) to permethrin and deltamethrin was 
monitored before and after a mass distribution of LLINs in Kinshasa in December 2016, and in 6 other sites across the 
country in 2017 and 11 sites in 2018.

Methods: In Kinshasa, CDC bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and del-
tamethrin were conducted using An. gambiae s.l. collected as larvae and reared to adults. Bioassays were conducted 
in four sites in Kinshasa province 6 months before a mass distribution of deltamethrin-treated LLINs and then two, 
six, and 10 months after the distribution. One site in neighbouring Kongo Central province was used as a control (no 
mass campaign of LLIN distribution during the study). Nationwide intensity assays were conducted in six sites in 2017 
using CDC bottle bioassays and in 11 sites in 2018 using WHO intensity assays. A sub-sample of An. gambiae s.l. was 
tested by PCR to determine species composition and frequency of kdr-1014F and 1014S alleles.

Results: In June 2016, before LLIN distribution, permethrin resistance intensity was high in Kinshasa; the mean mor-
tality rate was 43% at the 5× concentration and 73% at the 10× concentration. Bioassays at 3 time points after LLIN 
distribution showed considerable variation by site and time and there was no consistent evidence for an increase in 
pyrethroid resistance intensity compared to the neighbouring control site. Tests of An. gambiae s.l. in 6 sites across the 
country in 2017 and 11 sites in 2018 showed all populations were resistant to the diagnostic doses of 3 pyrethroids. In 
2018, the intensity of resistance varied by site, but was generally moderate for all three pyrethroids, with survivors at 
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Background
Malaria remains the leading cause of consultation, hos-
pitalization, and death in the Democratic Republic of 
Congo (DRC), with on average more than 5000 malaria 
deaths per month [1]. The National Malaria Control 
Programme (NMCP) has a strategic goal of protect-
ing at least 80% of the population at risk with preventa-
tive measures by 2020 [2]. The primary vector control 
method used to protect people in DRC is the free distri-
bution of long-lasting insecticidal nets (LLINs). LLINs 
have been distributed on a provincial level, with rolling 
mass distributions scheduled for provinces approxi-
mately every 3 years, and routine distribution being done 
through ante-natal clinic (ANC) visits, expanded pro-
gramme of immunization (EPI) visits, and in some prov-
inces, school-based distribution.

Pyrethroids have been the insecticide class of choice 
for mosquito nets for more than 30  years and are still 
an important component of every LLIN that currently 
has prequalified status by World Health Organization 
(WHO) [3]. These compounds are fast-acting, safe for 
human contact, and have shown impressive commu-
nity-level effects when deployed in areas where malaria 
vectors are susceptible [4, 5]. Pyrethroid resistance was 
first reported in malaria vectors in West Africa in the 
1980s and 1990s [6, 7] and has since become widespread 
across most of sub-Saharan Africa [8]. The implications 
for malaria vector control are not clear, but resistance 
is a serious concern to the WHO [9] and the NMCP of 
DRC [10], with fears that pyrethroid resistance may com-
promise the efficacy of pyrethroid LLINs. Despite this, 
a number of studies in sub-Saharan Africa have shown 
that LLINs continued to help reduce malaria cases even 
with the presence of pyrethroid resistant malaria vectors 
[11–15].

In DRC, studies from 2013 have shown no signifi-
cant difference in the odds of malaria infection between 
people owning a permethrin LLIN and those without a 
net, while those with deltamethrin- and alpha-cyper-
methrin-treated nets had significantly reduced odds of 
malaria infection [16, 17]. These results corresponded 
with the higher frequency of permethrin resistance than 
resistance to deltamethrin noted in susceptibility tests 

conducted in 2013 [18] (MPSMRM, 2014). Molecular 
analysis of pyrethroid resistant Anopheles malaria vectors 
in several locations in DRC has shown the upregulation 
of genes related to metabolic resistance that were associ-
ated with high rates of Plasmodium infection and loss of 
LLIN efficacy [19, 20].

Previous published susceptibility data from DRC has 
focused on the use of a diagnostic concentration of insec-
ticide to determine whether a mosquito population is 
susceptible or resistant [9, 18, 21]. However, it is thought 
that the intensity of pyrethroid resistance may be an 
important indicator of potential pyrethroid LLIN control 
failure [22, 23]. For this reason, annual insecticide resist-
ance intensity testing has been scaled-up in DRC [18, 21]. 
While agricultural use of pyrethroids has been associated 
with initial development of resistance in some studies 
[24, 25], other studies have found that mass distribu-
tion of LLINs was associated with increasing resistance 
[26–28]. These studies have mostly looked at mosquito 
populations retrospectively and little is known about how 
rapidly these changes occur following a LLIN distribu-
tion campaign. Therefore, part of this study was to moni-
tor pyrethroid resistance intensity in suburbs of Kinshasa 
before and after mass LLIN distribution in December 
2016. Additionally, intensity of pyrethroid resistance was 
monitored nationwide in six other sites in 2017 and 11 
sites in 2018.

Methods
Study sites
The first part of the study was conducted in Kinshasa 
Province in 2016 and 2017. Four sites were selected for 
mosquito larval collection to monitor changes in Anoph-
eles gambiae sensu lato (s.l.) pyrethroid resistance inten-
sity following mass LLIN (DawaPlus 2.0 coated with 
deltamethrin at a target dose of 80 mg/m2) distribution in 
December 2016 (Fig. 1). A fifth site, Kasangulu, in neigh-
bouring Kongo Central province was selected to pro-
vide a “control” site, which would not be included in the 
Kinshasa Province LLIN distribution campaign in 2016. 
However, a limitation is that PermaNet 2.0 LLINs (for-
mulation of deltamethrin at a target dose of 55 mg/m2)) 
were distributed in a mass campaign in Kongo Central 

×5 the diagnostic dose. Anopheles gambiae sensu stricto (s.s.) was the most common species identified across 11 sites 
in DRC, but in Kinshasa, An. gambiae s.s. (91%) and Anopheles coluzzii (8%) were sympatric.

Conclusions: Moderate or high intensity pyrethroid resistance was detected nationwide in DRC and is a serious 
threat to sustained malaria control with pyrethroid LLINs. Next generation nets (PBO nets or bi-treated nets) should be 
considered for mass distribution.

Keywords: Pyrethroid, Resistance intensity, Democratic Republic of Congo, Anopheles gambiae, CDC bottle bioassay, 
WHO susceptibility test
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Province in 2014. More details of the study sites and pre-
vious mass LLIN distributions in each region are pre-
sented in Additional file 1: Table S1.

The second part of the study involved nationwide test-
ing of pyrethroid resistance intensity. Deltamethrin and 
permethrin resistance intensity tests were conducted in 
six sites in 2017 using Centers for Disease Control and 
Prevention (CDC) bottle bioassays. In 2018, testing was 
expanded to eleven sites, with resistance intensity to per-
methrin, alpha-cypermethrin and deltamethrin moni-
tored using WHO tube tests for intensity (Fig. 2). More 
site details are included in Additional file 1: Table S1.

Insecticide susceptibility tests
Mass LLIN distribution took place in December 2016 
in Kinshasa Province. CDC intensity assays were con-
ducted once before the mass distribution of LLINs (June 
2016) and two, six, and ten months after the distribu-
tion (February 2017, June 2017, and October 2017). For 
each round of bioassays, An. gambiae s.l. larvae were 
collected from the five sites (Fig. 1) and returned to the 
laboratory at the Institute National de Recherche Biomé-
dicale (INRB) in Kinshasa city, where they were reared 
to adults. Adult mosquitoes were kept in cages and pro-
vided with 10% sugar solution ad libitum until the time of 
testing at the age of 2–5 days.

The intensity assays conducted nationwide followed 
the same protocol, but tests were conducted once per 
year (all tests between January and August in 2017 and 
2018) and mosquitoes were reared and tested in field 
insectaries.

CDC bottle bioassays
CDC bottle bioassays were conducted to determine the 
intensity of pyrethroid resistance, following standard 
guidelines [29, 30]. Pre-measured vials of technical grade 
active ingredient were supplied by CDC and made into 
stock solutions for each insecticide dose by diluting with 
acetone. Stock solutions were stored in the refrigerator 
(4 °C) in light-proof bottles for future use. Glass Wheaton 
bottles (250 ml) were washed with warm soapy water and 
rinsed thoroughly with water at least three times and left 
to dry overnight. A disposable pipette was used to trans-
fer 1  ml of acetone into the negative control bottle and 
1 ml of each stock solution into the respective treatment 
bottle. Bottles were swirled so that the glass bottom and 
inside cap were coated before being placed on their side 
and rotated while rocking so that the sides were evenly 
coated with insecticide. The bottles were protected 
from sunlight, and caps removed before being left to dry 
overnight.

Fig. 1 Sites where Anopheles gambiae s.l. were collected for pyrethroid intensity bio-assays in Kinshasa Province (Kingasani, Kinkole, Kimpoko and 
Bu) as well as Kasangulu site in neighbouring Kongo Central Province
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An aspirator was used to gently add twenty-five mos-
quitoes into each bottle per replicate. Four replicates of 
each dose were done to reach approximately 100 mosqui-
toes tested. Mosquitoes were exposed for the diagnostic 
time of 30 min, with knock-down being recorded at the 
end of exposure. A knocked-down mosquito was defined 
as not being able to stand. Deltamethrin was tested at 1× 
(12.5  μg/bottle), 2× (25  μg/bottle), 5× (62.5  µg/bottle), 
and 10× (125 µg/bottle) the diagnostic dose for Anoph-
eles. Permethrin was also tested at 1× (21.5  μg/bottle), 
2× (43  μg/bottle), 5× (107.5  µg/bottle), and 10 times 
(215 µg/bottle) the diagnostic dose for Anopheles.

WHO susceptibility tests
In 2018, insecticide susceptibility and resistance inten-
sity testing were conducted in 11 sentinel sites (Fig. 1) 

using the WHO tube test. The insecticides tested in 
2018 were: deltamethrin 1×, 5×, 10× (0.05%, 0.25%, 
0.5%); permethrin 1×, 5×, 10× (0.75%, 3.75%, 7.5%) 
and alpha-cypermethrin 1×, 5×, 10× (0.05%, 0.25%, 
0.5%). In all sites, susceptibility testing was conducted 
with adult An. gambiae s.l., following WHO protocols 
[22]. INRB entomologists traveled to each site to collect 
larvae and pupae, which were reared to female adult 
mosquitoes aged 2–5  days and exposed for 1  hour to 
insecticide-treated filter papers provided by the WHO 
(prepared by Universiti Sains Malaysia). All tests were 
accompanied by negative control tests where mosqui-
toes were exposed to filter papers impregnated with oil 
or solvent. Testing was done according to WHO pro-
tocols, with mortality read 24  h after exposure. Four 
replicates of 25 An. gambiae s.l. were exposed to each 
concentration.

Fig. 2 Sites where pyrethroid intensity assays were conducted throughout DRC in 2017 and 2018. Red stars indicate sites where bio-assays were 
conducted in 2017 and 2018; blue stars indicate sites where bio-assays were conducted in 2018 only. Note that the 2017 Kingasani results are 
presented with the Kinshasa results
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Identification of species and target site mutations
A subset of An. gambiae s.l. that were collected from 
the four sites in Kinshasa (Bu, Kimpoko, Kingasani and 
Kinkole) and 1 ‘control’ site in Kongo Central (Kasun-
gulu) in October 2017 and tested in CDC control bot-
tles, were sent to CDC, Atlanta, USA for molecular 
analysis. In addition, 100 mosquitoes used for WHO 
bioassays in each of the eleven nationwide sites in 
2018 were used for molecular analysis at INRB, Kin-
shasa, DRC. PCR was used to determine the species 
of mosquitoes from the An. gambiae complex and to 
determine the frequency of the voltage-gated sodium 
channel mutation (VGSC) 1014S (formerly known 
as kdr-east) and VGSC-1014F (formerly known as 
kdr-west).

Genomic DNA was extracted from whole mosqui-
toes at CDC using  ExtractaTM DNA Prep for PCR-
Tissue kits (QuantaBio, USA) and at INRB using the 
CTAB method [31]. Species identification was per-
formed according to the protocol of Wilkins et al. [32] 
at CDC and using the protocol of Santolamazza et al. 
[33] at INRB. The VGSC-1014S and 1014F alleles were 
detected using adapted protocols for allele-specific 
PCR (AS-PCR) [34–36]. Anopheles coluzzii AKDR and 
An. gambiae sensu stricto (s.s.) RSP-ST strains from 
the Malaria Research and Reference Reagent Resource 
Center (MR4), were used as positive controls, along-
side negative (no template) controls.

Analysis
Scoring of bottle bioassays using the diagnostic dose 
followed WHO and CDC criteria, with mortality of 
98–100% indicating susceptibility, 90–97% indicat-
ing possible resistance that should be confirmed, and 
less than 90% indicating resistance [22, 29]. Mortality 
of 98–100% at the 5× concentration (but < 90% at 1×) 
indicates low resistance intensity. Mortality < 98% at 
the 5 × concentration but 98–100% at the 10× concen-
tration indicates moderate resistance intensity. Mor-
tality < 98% at the 10× concentration indicates high 
resistance intensity [22].

The comparison of bioassay results prior to the LLIN 
mass distribution and after distribution in Kinshasa 
were made using a logistic regression model, taking 
into account the dose, site, time period, and an inter-
action between dose and site as fixed effects and bottle 
as a random effect. Analysis was done using the glmm 
function in R (version 3.2.3). Pearson’s Chi squared test 
was used to determine deviations from Hardy–Wein-
berg equilibrium for VGSC-1014F allele frequencies.

Results
Intensity of resistance in Kinshasa Province 
before and after LLIN mass distribution using CDC bottle 
bioassay
Over the four periods of testing, a total of 15,200 An. 
gambiae s.l. were used for resistance intensity bioas-
says in Kinshasa Province. Resistance to permethrin 
and deltamethrin was found in all sites (Fig.  3). In 
June 2016, before LLIN distribution mean results for 
Kinshasa (mean of Kingasani, Kinkole, Kimpoko, Bu) 
showed that permethrin resistance intensity was high 
and the mean mortality rate was 43% at the 5× con-
centration and 73% at the 10× concentration. After the 
mass distribution of LLINs in December 2016 (mean 
results for February, June and October tests) the mean 
mortality rate in Kinshasa was 32% for 5× and 60% 
with permethrin at the 10× concentration. The mean 
resistance intensity to deltamethrin was also high 
before LLIN distribution (75% at 5× and 94% mortal-
ity at 10× concentration) but decreased after LLIN 
distribution to a mean of 95% and 99% mortality at 5 
and 10× concentrations, respectively. In general, levels 
of resistance were lower for deltamethrin, compared 
to permethrin. However, there was considerable varia-
tion in the results by site (Table 1). The hypothesis was 
that resistance intensity to permethrin and deltame-
thrin would increase in Kinshasa following LLIN distri-
bution, compared to the control site of Kasangulu. In 
the control site of Kasangulu, mortality in permethrin 
intensity tests decreased significantly in 2017 (indicat-
ing an increase in resistance). 

Resistance intensity was greater in Kinkole for perme-
thrin (OR 11.49, p-value < 0.001) and deltamethrin (OR 
22.00, p-value < 0.001) compared to Kasangulu post-
LLIN distribution and also in Kimpoko for deltamethrin 
(OR 2.57, p-value < 0.001). In Kingasani, the opposite 
trend was recorded with a significantly lower resistance 
intensity following LLIN distribution for permethrin 
(OR 0.11, p-value < 0.001) and deltamethrin (OR 0.21, 
p-value < 0.001) compared to the control site, while in 
Bu there was no significant change post-distribution in 
resistance intensity for either insecticide.

Intensity of permethrin and deltamethrin resistance in six 
sites in DRC in 2017 using CDC bottle bioassay
Nationwide bioassay testing showed that permethrin 
resistance was present in all 6 sites, with less than 10% 
mortality at the diagnostic dose. Mortality rates increased 
slightly with increased concentration, but high intensity 
permethrin resistance was present in all sites, with con-
siderably less than 98% mortality at 10× the diagnostic 
concentration of permethrin (Fig. 4).
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Anopheles gambiae s.l. populations were less 
intensely resistant to deltamethrin, although all 
populations tested were resistant at 1× and 2× the 
diagnostic dose. The resistance intensity was low 
(> 98% mortality at 5× dose) in Kabondo and Inongo, 

moderate in Kalemie and Katana (> 98% mortality at 
10× dose) and high (< 98% mortality at 10× dose) in 
Mikalayi and Kapolowe (Fig. 5).

Fig. 3 Adjusted estimates (and 95% confidence intervals) for mortality (at 30 min) of An. gambiae s.l. from Kinshasa province in CDC bottle intensity 
assays conducted in 2016–2017
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Intensity of permethrin, deltamethrin 
and alpha‑cypermethrin resistance in eleven sites in 2018 
in DRC using the WHO tube test
In 2018, nationwide WHO insecticide susceptibility and 
resistance intensity tests were completed with An. gam-
biae s.l. populations in 11 sites. The data is presented in 
Figs. 6, 7, and 8 for permethrin, deltamethrin and alpha-
cypermethrin, respectively. In Kabondo, testing with 
alpha-cypermethrin 5× and 10× was not completed as 

mortality was > 20% in the control and the field team was 
unable to find sufficient larvae for repeat tests. Resist-
ance to permethrin (< 90% mortality) was observed in all 
sites at the diagnostic dose (1×), except Katana, where 
there was possible resistance (90–98% mortality). Resist-
ance intensity was low in Katana, Inongo, and Kapolowe; 
moderate (> 98% mortality at 5× dose) in Karawa, Kimp-
ese, Mikalayi, and Pawa; and high (< 98% mortality at 
10× dose) in Kingasani, Lodja, and Kalemie (Fig. 6).  

Resistance to deltamethrin was recorded in all sites, 
except Katana (possible resistance), Lodja and Inongo 
(susceptible). The intensity of resistance was low in 
Kapolowe and Kabondo, moderate in Mikalayi, and 
high in Kingasani, Karawa, Kimpese, Kalemie, and Pawa 
(Fig. 6).

Resistance to alpha-cypermethrin was also observed in 
all sites. The intensity was low in Kalemie and Kapolowe, 
high in Katana, Mikalayi, and Lodja, and moderate in the 
remaining five sites (Fig. 7).

Species identification within the An. gambiae complex 
and frequency of VGSC‑1014F and 1014S resistance alleles
Kinshasa resistance intensity study post‑LLIN distribution 
(2017)
A total of 217 An. gambiae s.l. were tested for species 
identification and of those samples, 189 were analysed 
for VGSC-1014F and 1014S frequency. The primary spe-
cies found was An. gambiae s.s. (91%). Anopheles coluzzii 
were only identified in Kimpoko (9%) and Kinkole (32%). 
Hybrid An. gambiae s.s./An. coluzzii were only found in 
Kinkole (2/44) (Table 2). One percent of samples did not 
amplify.

Overall, both An. gambiae s.s. and An. coluzzii car-
ried VGSC-1014F and 1014S resistance alleles, albeit at 
different frequencies. The mean frequency of resistance 
alleles determined across all sites for An. gambiae s.s. was 
83% for homozygote VGSC-1014F, 3% for homozygote 

Table 1 Odds ratios and  p-values for  permethrin 
and  deltamethrin susceptibility bioassays conducted 
in  and  around Kinshasa, DRC, taking into  account dose, 
site, evaluation period, and the change in the distribution 
site relative to the control site

Permethrin Deltamethrin

Odds ratio p‑value Odds ratio p‑value

Dose

 1× Reference Reference

 2× 3.44 < 0.001 2.49 < 0.001

 5× 13.61 < 0.001 10.48 < 0.001

 10× 79.97 < 0.001 Undefined < 0.001

Site

 Kasangulu Reference Reference

 Bu 0.23 0.003 2.27 0.010

 Kimpoko 0.47 0.045 0.42 0.008

 Kingasani 1.62 0.153 5.75 < 0.001

 Kinkole 0.02 < 0.001 0.07 < 0.001

Evaluation period

 Pre-distribution Reference Reference

 Post-distribution 0.49 < 0.001 1.09 0.568

Change in distribution site relative to the control site (Kasangulu)

 Bu 0.70 0.099 0.66 0.072

 Kimpoko 0.95 0.791 2.57 < 0.001

 Kingasani 0.11 < 0.001 0.21 < 0.001

 Kinkole 11.49 < 0.001 22.00 < 0.001

Fig. 4 Mortality (and 95% confidence intervals) of wild Anopheles 
gambiae s.l. collected in six sites in DRC and tested in CDC intensity 
assays with permethrin

Fig. 5 Mortality (and 95% confidence intervals) of wild Anopheles 
gambiae s.l. collected in six sites in DRC and tested in CDC intensity 
assays with deltamethrin
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1014S and 14% for heterozygous 1014F/1014S (Table 3). 
All VGSC-1014F frequencies were over 70% for An. 
gambiae s.s. and the highest was observed in Kingasani 
and Kinkole (both 91%). The trend was different for An. 
coluzzii, with 94% (16/17) being homozygous for the 
VGSC-1014S allele.

Resistance intensity survey covering 11 sites nationwide 
(2018)
A total of 998/1100 (91%) An. gambiae s.l. were success-
fully amplified for species identification and 862/1100 
(78%) for L1014F. Overall, An. gambiae s.s. (98.5%) was 
the primary species in all 11 sites. Anopheles coluzzii 
were only found in Kingasani (1%) and Mikalayi (1%) and 

1% of hybrid An. gambiae s.s./An. coluzzii were found in 
Kingasani (Table 4). The VGSC-1014F frequency for An. 
gambiae s.l. recorded over eleven sites in 2018 varied 
between 0.85 (Kingasani) and 1.0 (Pawa and Karawa). The 
mean VGSC-1014F was close to fixation at 0.98 (Table 5). 
Evidence for significant deviations from Hardy–Wein-
berg equilibrium were observed for VGSC-1014F in Kin-
gasani, Kalemie, Kabondo and Katana (Table 5). 

Discussion
Insecticide-treated nets are believed to be an important 
source of selection pressure for pyrethroid resistance 
genes in African malaria vectors [27, 37]. In addition to 
LLINs, other environmental factors such as agricultural 

Fig. 6 Percentage mortality of An. gambiae s.l. after exposure to permethrin at 1×, 5×, and 10× times the diagnostic concentration.*In Karawa, 0% 
mortality was recorded with permethrin 1×

Fig. 7 Percentage mortality of An. gambiae s.l. after exposure to deltamethrin at 1×, 5×, and 10× times the diagnostic concentration
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pesticide run off into mosquito larval sites, may exert 
additional selection pressure on malaria vectors [24, 
38]. Between 2011 and 2018, an estimated 134.8 million 
LLINs were distributed nationwide in DRC through mass 
campaigns and through routine distribution in schools 
and during ANC and EPI visits [39]. National Demo-
graphic and Health Surveys (DHS) have documented 
a substantial increase in net ownership, from just 9% of 
households nationwide owning at least one LLIN in 2007 
[40], compared with 51% in 2010 [41] and 70% in 2013/14 
[42]. This scale up of LLINs in DRC has coincided with 

Fig. 8 Percentage mortality of An. gambiae s.l. after exposure to alpha-cypermethrin at 1×, 5×, and 10× times the diagnostic concentration.*In 
Kabondo, alpha-cypermethrin 0.25% and 0.5% were not tested

Table 2 Species identification within  the  complex An. 
gambiae s.l. from study sites in the province of Kinshasa

Site An. gambiae species n(%)

An. gambiaes.s. An. coluzzii Hybrid Total

Bu 32 (100%) 0 0 32 (100%)

Kasangulu 46 (100%) 0 0 46 (100%)

Kimpoko 30 (91%) 3 (9%) 0 33 (100%)

Kingasani 62 (100%) 0 0 62 (100%)

Kinkole 28 (64%) 14 (32%) 2 (5%) 44 (100%)

Total 198 (91%) 17 (8%) 2 (1%) 217 (100%)

Table 3 Kdr L1014F and L1014S resistance alleles from the study sites in the province of Kinshasa

Anopheles species Site Homozygous kdr‑west 
(L1014F/L1014F)

Homozygous kdr‑east 
(L1014S/L1014S)

Heterozygous ‑west/‑
east (L1014F/L1014S)

Anopheles gambiae s.s. Kasangulu 28 (0.70) 3 (0.08) 9 (0.23)

Kingasani 52 (0.91) 1 (0.02) 4 (0.07)

Kinkole 21 (0.91) 1 (0.04) 1 (0.04)

Kimpoko 18 (0.86) 0 (0.00) 3 (0.14)

Bu 21 (0.78) 0 (0.00) 6 (0.22)

Total An. gambiae s.s. All sites 140 (0.83) 5 (0.03) 23 (0.14)

An. coluzzii Kinkole 0 (0.00) 14 (1.00) 0 (0.00)

Kimpoko 1 (0.33) 2 (0.67) 0 (0.00)

Total An. coluzzii All sites 1 (0.06) 16 (0.94) 0 (0.00)

Anopheles gambiae s.s./An. coluzzii Kinkole 0 (0.00) 0 (0.00) 2 (1.00)

An. gambiae s.l. Overall 141 (0.75) 21 (0.11) 25 (0.13)
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the gradual spread of pyrethroid resistance and more 
recent increase in resistance intensity. Following a mass 
LLIN distribution campaign in Kinshasa in 2016, this 
study produced no consistent evidence for an increase 
in pyrethroid resistance intensity compared to the neigh-
bouring control site of Kasungulu, where there was no 
mass LLIN campaign in 2016. There was a great deal of 
variation over time by insecticide and site. It is difficult 
to design a study to effectively measure the contribution 
of mosquito nets to selection pressure of mosquitoes, 
since LLINs are already widely distributed in DRC and 
pyrethroid resistance is prevalent in all malaria eco-epi-
demiological settings. It is also difficult to measure the 
impact of household and agricultural use of pyrethroids. 
Mass LLIN campaigns had previously been conducted in 

Kinshasa in 2008 and 2013, and in Kongo Central Prov-
ince (where Kasungulu is situated) in 2012 and 2014 
(Additional file  1: Table  S1). Pyrethroid selection pres-
sure had been ongoing for many years before the 2016 
distribution in Kinshasa, which may explain the lack of 
difference between sites following the 2016 LLIN cam-
paign in Kinshasa.

Nationwide tests of malaria vector populations in 
6 sites in 2017 and 11 sites in 2018 showed all popula-
tions were resistant to diagnostic doses of type I (perme-
thrin) and type II (deltamethrin and alpha-cypermethrin) 
pyrethroids. Regular monitoring of vector resistance 
has shown that pyrethroid resistance in An. gambiae s.l. 
became widespread in DRC  relatively recently. Perme-
thrin susceptible An. gambiae s.l. were present in Kin-
shasa in 2009 [21], while deltamethrin susceptibility was 
recorded in Lodja (Sankuru Province), Kalemie (Tang-
anyika Province), Kapolowe (Haut Katanga), Katana (Sud 
Kivu) and Kinshasa in 2016 [18]. Resistance to perme-
thrin, deltamethrin and alpha-cypermethrin now appears 
to be present nationwide.

Anopheles gambiae s.s. was the most common vector 
species identified among the An. gambiae complex ana-
lysed across 11 sites in DRC. However, in Kinshasa, An. 
gambiae s.s. (91%) and An. coluzzii (8%) were sympatric 
and there was a small proportion of hybrid An. gambiae 
s.s./An. coluzzii (5%) in Kinkole. Though the frequency of 
hybrids in the Anopheles population from Kinkole is low, 
mating seems to be occurring between the two species. 
Both species are commonly sympatric in Central Africa, 
but hybrids of An. gambiae s.s./An. coluzzii are usually 
very uncommon [43, 44]. Populations of An. gambiae 
and An. coluzzii have previously been shown to be sym-
patric in several geographical areas in DRC, including 

Table 4 Species identification within  the  complex An. 
gambiae s.l. over eleven study sites in 2018

Site An. gambiae species n (%) Total Did 
not amplify

An. gambiae 
s.s.

An. coluzzii Hybrid

Lodja 65 (65%) 0 0 100 35 (35%)

Kapolowe 88 (88%) 0 0 100 12 (12%)

Kingasani 82 (82%) 4 (4%) 3 (3%) 100 11 (11%)

Mikalayi 53 (53%) 8 (8%) 0 100 39 (39%)

Kalemie 96 (96%) 0 0 100 4 (4%)

Kimpese 99 (99%) 0 0 100 1 (1%)

Pawa 100 (100%) 0 0 100 0

Karawa 100 (100%) 0 0 100 0

Inongo 100 (100%) 0 0 100 0

Kabondo 100 (100%) 0 0 100 0

Katana 100 (100%) 0 0 100 0

Overall 983 (89%) 12 (1%) 3 (1%) 1100 102 (9%)

Table 5 L1014F resistance alleles over eleven study sites in 2018

RR means homozygote resistant, RS means heterozygote resistant and SS means homozygote susceptible

Site Number tested RR RS SS Did not amplify Frequency 1014F χ2 p‑value

Lodja 100 98 1 0 1 0.99 0.0026 0.96

Kapolowe 100 98 1 0 1 0.99 0.0026 0.96

Kingasani 100 64 0 11 25 0.85 61 < 0.000

Mikalayi 39 31 0 4 4 0.89 – –

Kalemie 100 90 0 3 7 0.97 93 < 0.000

Kimpese 100 96 1 0 3 0.99 0.0026 0.96

Pawa 100 86 0 0 14 1 – –

Karawa 100 95 0 0 5 1 – –

Inongo 100 95 3 0 2 0.98 0.024 0.88

Kabondo 100 50 0 1 49 0.98 51 < 0.000

Katana 100 80 0 3 17 0.96 83 < 0.000

Overall 1039 883 6 22 128 0.97
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Lodja, Mikalayi, Kalemie, Katana, Kinshasa, Kimpese and 
Inongo [18].

Both An. gambiae s.s. and An. coluzzii carried VGSC-
1014F and 1014S alleles. However, An. coluzzii in Kin-
shasa had a high frequency of the 1014S allele, while An. 
gambiae s.s. had a high frequency of the 1014F allele; the 
latter observation may partially explain the higher lev-
els of local permethrin resistance, despite deltamethrin-
treated LLINs predominating in the most recent mass 
distribution campaigns. VGSC-1014F and L1014S are 
suspected to play a larger contributing role in resistance 
to type I (permethrin) versus type II (deltamethrin and 
alpha-cypermethrin) pyrethroids [45]. Interestingly, a 
proportion of heterozygous An. gambiae s.s. from Kin-
shasa harboured both VGSC-1014F and 1014S alleles. 
The phenomenon of these mutations co-occurring in 
individual mosquitoes has previously been reported in 
Senegal [46] and Uganda [47] and in Nord Ubangi, DRC 
[48]; however, the biological implications of possessing 
both resistance genotypes remain unknown and war-
rant further investigation. A limitation of this study is 
that only target site mutations for resistance were inves-
tigated. Mixed function oxidases (MFO) are implicated 
in pyrethroid resistance in several sites in DRC [49]. In 
addition, bioassays in 2016 showed increased mortality 
in permethrin resistant populations in DRC after pre-
exposure to synergist piperonyl butoxide (PBO) [18]. 
The genetic basis conferring resistance to pyrethroids in 
malaria vectors An. gambiae s.s. and An. coluzzii needs 
to be investigated at the national level to improve malaria 
control decision-making, particular with regard to choice 
of LLINs for mass distribution campaigns.

Widespread pyrethroid resistance, particularly high 
intensity resistance, is of great importance for the 
NMCP for the implementation of evidence-based resist-
ance management strategies and deployment of effica-
cious malaria vector control tools. Resistance intensity 
assays showed that neither 1, 5 or 10 times the diag-
nostic concentrations of permethrin, deltamethrin and 
alpha-cypermethrin were sufficient to provide adequate 
mortality of An. gambiae s.l. collected from 6 nation-
wide sites in  2017 tested using CDC bottle bioassays 
and 11 sites in 2018 using WHO tube tests. The WHO 
states that “when resistance is confirmed at the 5× and 
especially at the 10× concentrations, operational failure 
is likely” [22]. Pyrethroid LLINs should continue to offer 
some protection from malaria even in locations with high 
intensity resistance, through a combination of physical 
barrier, reduced survival of malaria vectors and malaria 
parasites [50–52]. However, next generation LLINs either 
impregnated with pyrethroids and the synergist PBO or 
containing chlorfenapyr (Interceptor  G2®) are potential 
alternatives for the improved efficacy of LLINs and for 

resistance management. Several experimental hut studies 
have shown improved efficacy of PBO and chlorfenapyr 
LLINs in controlling pyrethroid resistant malaria vectors 
compared to conventional pyrethroid LLINs [53–57]. 
LLINs containing PBO or novel insecticide classes should 
be considered by the NMCP of DR Congo for future 
LLIN distribution campaigns in areas of moderate to 
high intensity of pyrethroid resistance, although the costs 
of these nets would also need to be considered.

Conclusion
The widespread presence of moderate to high intensity 
pyrethroid resistance across all sentinel sites in DRC is 
a great concern. There was a great deal of variation in 
resistance over time by insecticide and no consistent evi-
dence for an increase in pyrethroid resistance intensity 
was observed following the mass LLIN campaign. The 
difficulties in defining resistance and understanding its 
complexities don’t change the fact that it is a great con-
cern and next generations nets should be considered in 
DRC to sustain effective malaria control.
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