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Abstract 15 

Anti-malarial drugs have long half-lives, so clinical trials to monitor their efficacy require long 16 

durations of follow-up to capture drug failure that may only become patent weeks after treatment. 17 

Reinfections often occur during follow-up so robust methods of distinguishing drug failures 18 

(recrudescence) from emerging new infections are needed to produce accurate failure rate 19 

estimates. “Molecular correction” aims to achieve this by comparing the genotypes between a 20 

patient’s pre-treatment (initial) blood sample and any infection that occurs during follow-up, 21 

‘matching’ genotypes indicating a drug failure. We use an in-silico approach to show that the widely 22 

used “match counting” method of molecular correction with microsatellite markers is likely to be 23 

highly unreliable and may lead to gross under- or over-estimates of true failure rates depending on 24 

the choice of matching criterion.  A Bayesian algorithm for molecular correction has been previously 25 

developed and utilized for analysis of in vivo efficacy trials. We validated this algorithm using in silico 26 

data and showed it had high specificity and generated accurate failure rate estimates. This 27 

conclusion was robust for multiple drugs, different levels of drug failure rate, different levels of 28 

transmission intensity in the study sites, and microsatellite genetic diversity. The Bayesian algorithm 29 

was inherently unable to accurately identify low-density recrudescence that occurred in a small 30 

number of patients, but this did not appear to compromise its utility as a highly effective molecular 31 

correction method for analysing microsatellite genotypes. Strong consideration should be given to 32 

using Bayesian methodology for obtaining accurate failure rate estimates during routine monitoring 33 

trials of antimalarial efficacy that use microsatellite markers.  34 
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Background  36 

 37 

Effective treatment of P. falciparum malaria infections is essential but is threatened by the spread of 38 

drug resistance to front-line antimalarial drugs, including artemisinin-based combination therapies 39 

(ACTs). Frequent monitoring of efficacy (1) is therefore necessary to confirm the effectiveness of 40 

current drugs, and to evaluate alternatives as they become available or necessary. The World Health 41 

Organization (WHO) recommends that endemic countries routinely re-test their currently used 42 

antimalarials at least every two years using standard patient-based in vivo trials. These are known as 43 

therapeutic efficacy study/studies  (TES)  (1); they generally only have one “arm” (i.e. the drug being 44 

evaluated). This terminology distinguishes TES from regulatory multi-arm trials used to evaluate 45 

proposed new regimens.  46 

 47 

Current first-line antimalarials are ACTs which are composed of an artemisinin derivative and a 48 

partner drug; the artemisinin component is short-lasting and rapidly clears parasites,  the partner 49 

drug has a longer half-life and is responsible for completely, but more slowly, clearing parasites. 50 

Ergo, if treatment fails due to resistance of parasites to the partner drugs, it may take several weeks  51 

for  these drug failures to become patent. TES must therefore follow-up patients for several weeks 52 

post treatment to ensure failures are detected. The consequence of this requirement for long 53 

follow-up periods in these TES  is that new infections not present at the time of treatment, termed 54 

“reinfections” (2) frequently occur during follow-up in moderate to high transmission areas. A 55 

patient presenting with detectable malaria parasites during follow-up (known as a recurrence / 56 

recurrent infection) may have a reinfection, which does not indicate that treatment failed to clear 57 

the patient’s initial infection. Thus,  recurrent infections  trigger molecular testing   that leads to 58 

them being classified as either: i) Plasmodium falciparum  clones that infected the patient pre-59 

treatment (initial clones) and were subsequently not cleared by treatment (termed recrudescence) 60 

or ii) reinfections  that occurred  during follow-up (3). In a methodology alternately called PCR 61 

correction or molecular correction, the genotype of the malaria infection at the time of treatment 62 

(the initial sample) is compared with the genotype of any recurrence during follow-up. The purpose 63 

of this comparison is to distinguish  recrudescences from reinfections such that patients with 64 

reinfections can be excluded from subsequent analysis, thus producing a “corrected” drug efficacy 65 

estimate. 66 

The original WHO and Medicines for Malaria Venture (MMV) consensus methodology was based on 67 

the use of length-polymorphic markers msp-1, msp-2, and glurp(3). An alternative system,  68 

microsatellite markers – segments of repeated genetic motifs -  has been explored (4-6), a proposed 69 

advantage being the lack of immune selection on ostensibly neutral microsatellite markers (7). In 70 

this methodology, researchers genotype microsatellite loci in both initial   and recurrent infections 71 

and count the number of matching loci in each patient i.e. the number of loci at which at least a 72 

single allele is shared between the initial and recurrent infection. They then define a certain number 73 

of matches to be indicative of recrudescence. In addition to their use in TES, microsatellites have 74 

also been commonly used to assess treatment failure in returning travellers in non-endemic areas 75 

(8-10). 76 

There are two inherent sources of bias in running TES, independent of the genotyping method: 77 
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a) A patient who fails to clear their initial infections may have a reinfection that becomes patent 78 

before the recrudescent clone reaches a detectable level; ethically, that patient must be treated 79 

and so is removed (or “censored”) from the study before the recrudescence can be observed.  80 

b) A patient who fails to clear their initial infection may have that infection persist at a low-lying 81 

level, below the limit of detection of light microscopy (assumed, see later, to be 108
 total 82 

parasite count in the patient), such that parasites are never detected during follow-up; the 83 

frequency of this event   is influenced by the duration of follow-up in the trial i.e. the longer the 84 

follow-up, the less likely it is to occur.  85 

 86 

Classification of recurrences into reinfections and recrudescences also introduces potential bias into 87 

estimates of the true failure rate (11-14).  Genotyping of blood samples is imperfect and suffers from 88 

three key limitations. Firstly, patients are often infected by two or more malaria clones in high 89 

transmission areas and the lower density ”minority clones” contribute genetic signals that are hard 90 

to detect in the amplification process, meaning their low frequency alleles may fail to be detected in 91 

either blood sample (4). Secondly, there are inherent error rates when measuring the genotype of 92 

parasite, for example through imperfect determination of fragment length or sequencing error. 93 

Finally, there is the non-technical limitation that reinfections can, by chance, share alleles with 94 

clones of the initial infection – this is more pervasive in areas of lower genetic diversity (6).  These 95 

three factors combine to generate several additional several factors that need to be considered in 96 

the analysis of malaria drug trials: 97 

c) Recrudescent infections can be misclassified as reinfection if alleles of the recrudescent clone 98 

were  not detected when genotyping  the initial infection.  99 

d) Recrudescent infections can be misclassified as reinfection if a recrudescent clone has a 100 

sufficient number of base pair read errors (i.e., at multiple markers) such that it appears to be a 101 

reinfection.  102 

e)  A reinfection can be misclassified as recrudescent if it shares (by chance, or due to base pair 103 

read error) a genetic signal(s) with those clones present at time of treatment.  104 

Typically, microsatellite data are analysed by applying a mathematically simple match counting 105 

algorithm which  uses an arbitrary threshold for the number of loci that have common alleles 106 

between the initial and day of failure samples. In these algorithms, if the two samples have matching 107 

alleles at, or above, the threshold number of loci, they are classified as recrudescence, and 108 

otherwise, reinfections. Typically, classification of an infection as a recrudescence requires a match 109 

at most, if not all, sampled loci (4, 15, 16).  This kind of counting algorithm only deals with the 110 

unprocessed, “raw” genetic data and makes no allowance for errors  due to factors c to e described  111 

above resulting in  increased risk of misclassification, although more advanced statistical algorithms 112 

have been proposed to adjust for these potential biases (6). 113 

A recent publication (17) presented a statistical method based on  Bayesian probability to analyse 114 

microsatellite data to calculate drug failure rates. This method generates the posterior probability 115 

that a recurrent infection is a recrudescence and has subsequently been used to analyse TES data 116 

(18-20). The biases listed above mean that a simple method of counting matching microsatellites 117 

between samples may never be able to reliably classify a patient as reinfection or recrudescence. 118 

Bayesian analyses constitute a better, more flexible approach capable of dealing with these 119 

uncertainties and the advantages of a Bayesian approach are explained elsewhere (17).  120 
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We utilized a computer modelling approach to simulate therapeutic outcome following antimalarial 121 

therapy in anti-malarial trials. In these simulated data-sets, the parasitaemia of each patient’s clones 122 

is calculated at every time-step, thus  the true status (reinfection or recrudescence) of all recurrent 123 

infections is known. Using the simulated data, we then evaluated the ability of the Bayesian 124 

algorithm to correctly distinguish reinfections from recrudescences. This allowed us to quantify the 125 

accuracy of this method, which has not been possible in vivo; due to imperfect molecular correction 126 

techniques, the true failure rate of the population cannot be known.  We also compared the 127 

performance of the Bayesian algorithm to a threshold-based match counting algorithm, and 128 

investigated whether  the advantages of a Bayesian methodology are realised in the analysis of data 129 

from anti-malarial TES and whether this approach is truly as “robust” as postulated in the original 130 

paper (17). 131 

This study had three main objectives:  Firstly, to evaluate the accuracy of failure rate estimates 132 

generated using microsatellite data in conjunction with a match counting algorithm (as is currently 133 

typical). Secondly, to assess the advantages of Bayesian analysis methodology, both in its ability to 134 

recover the true failure rate and the diagnostic ability to distinguish recrudescence from 135 

reinfections. Thirdly, to check whether the methodologies based on microsatellite loci are robust 136 

across drugs with different post-treatment prophylactic profiles (i.e., partner drugs with varying half-137 

lives) which determine when reinfections start to occur, across different transmission intensities 138 

(which determine rates of reinfection in TES) and in regions with differing levels of genetic diversity 139 

at microsatellite loci.  140 

Methods 141 

Study Design 142 

We used existing pharmacokinetic / pharmacodynamic models (PK/PD) (21-23) to simulate parasite 143 

intra-host dynamics following treatment in 10,000 patients. We simulated whether original clones 144 

were cleared or survived drug treatment. If they  survived we then noted, whether the recrudescent 145 

clone(s) became patent during follow-up, and if/when reinfections occurred and became patent. We 146 

allowed clones present at time of treatment to have different numbers (densities) and assigned 147 

microsatellite alleles to each clone in the infection. This allowed us to simulate the genetic 148 

information that would occur during routine follow-up in these simulated patients that reflect the 149 

inherent problems in the follow-up and genotyping processes (i.e., inability to detect low density 150 

clones, and genotyping errors as described above). 151 

We ran 12 different scenarios, varying the drug, the failure rate, and the  level of transmission 152 

intensity, The latter factor is quantified as the force of infection (FO]) which is  the frequency at 153 

which reinfections emerge per person per year. Transmission intensity also affects  the initial 154 

number of clones in each patient at time of treatment (commonly known as the multiplicity of 155 

infection (MOI) or, equivalently, complexity of infection), and the level of genetic diversity in the 156 

population allele structure (details below). For each scenario, we used the Bayesian algorithm and 157 

the  match-counting algorithm to generate estimates of the failure rate. We then compared the 158 

estimate of the failure rate with the true failure rate to assess the accuracy of each algorithm. It is 159 

important to note that our methodology has two distinct steps: First, the mPK/PD model simulates 160 

parasite dynamics post-treatment, and we used a series of heuristics to calculate which alleles would 161 

be observable at any given time-steps. This provided data-sets that are akin to those obtained in 162 

vivo, where each patient’s infection is described by observable alleles in the initial sample and 163 

observable alleles of any recurrent sample. Secondly, we applied the match-counting and Bayesian 164 
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algorithms to this data to obtain failure rate estimates. The simulated data-set could then be used to 165 

analyse algorithm performance against the true failure rate (known from the simulation).  166 

Computational methodology 167 

All modelling and subsequent analysis was conducted using the statistical programming language R 168 

(version 3.5.1) (24). Figures were produced using base R graphics, and the ggplot2 package (25). For 169 

hardware details and programming considerations, see [Supplementary Information, SI].  170 

 171 

Trial Scenarios 172 

Twelve TES scenarios were simulated. The main body of this manuscript presents results obtained 173 

from simulations of artemether-lumefantrine (AR-LF) therapy, with results for the case of 174 

artesunate-mefloquine (AS-MQ) presented in the [SI]. The purpose of simulating two distinct 175 

treatments reflects the different post-treatment prophylactic duration of the drugs – AS-MQ persists 176 

at killing concentrations for longer than AR-LF. We primarily  wanted to analyse the use of 177 

microsatellite markers for AR-LF  treatment for which a Bayesian approach has been  previously 178 

been applied (17), but we also wanted to test if results were consistent for a drug with a longer post-179 

treatment prophylactic period.  For each drug, we simulated non-failing drugs with low failure rates 180 

(1-2%) and failing drugs with higher failure rate (~10%). True failure rate of the drug  is determined 181 

by the half maximal inhibitory concentration (IC50) of the drug in the parasite population; the IC50 182 

of each clone is drawn from a distribution of values (Table S1 of [SI]).  Note that we arbitrarily 183 

changed the mean IC50 value of partner drugs within the model to obtain different levels of 184 

treatment failure. We do not imply the values of IC50 here are representative of any particular field 185 

scenario, but rather use them to investigate the accuracy of techniques to analyse clinical trial data 186 

in a simulation environment. In our simulations, true failure rate changes with MOI (a higher MOI 187 

means that there are more clones within a patient that are potentially able to survive treatment, 188 

and so true failure rate increases), so we altered mean IC50 between scenarios for failing drugs to 189 

keep true failure rates within a percentage of each other between scenarios. Each drug calibration 190 

(i.e., non-failing AR-LF, failing AR-LF, non-failing AS-MQ and failing AS-MQ) were run in low, medium 191 

and high transmission settings.  These scenarios incorporated varying distributions of multiplicity of 192 

infection (MOI) at time of treatment, different frequency distributions of microsatellite alleles 193 

(obtained from Angola and based on transmission level, see parts 2.3 and 2.4 of [SI]), transmission 194 

intensity (quantified by FOI; see part 2.2 of [SI]) The calibration of each scenario in terms of MOI, 195 

allele frequency, FOI and mean IC50/True failure rate is presented in [SI]. Each scenario simulated 196 

10,000 patients for a 28-day follow-up period for AR-LF and as 42-day follow-up period for AS-MQ.  197 

The data we used for distributions of microsatellite markers came from three sentinel sites in Angola 198 

(17, 18), which represent areas with moderate to high transmission and thus relatively high diversity 199 

(Part 2.3 of [SI]). The risk of misclassifying a reinfection as a recrudescence is, intuitively, higher in 200 

areas of lower genetic diversity (potential error (e) described in the background), so we artificially 201 

generated an additional distribution of marker allele frequency with very low genetic diversity by 202 

modifying the allele distributions from the low diversity area (as described in part 2.4 of [SI] )to 203 

investigate the accuracy of failure rate estimates under this condition.   204 

 205 

PK/PD model specifications and output 206 
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We utilized a computer-based mechanistic PK/PD model of drug treatment of uncomplicated P. 207 

falciparum with either AR-LF or AS-MQ based on previous models (21-23). The methodology used 208 

the drug concentration profile in each patient to calculate the change in parasite counts 209 

(parasitaemia) of each malaria clone over time following drug treatment; this produced quantitative 210 

estimates of parasite dynamics in a patient following treatment (Figure S1, [SI]). The drug 211 

concentration over time in the patient population for each partner drug is shown in (Figures S2 and 212 

S3 [SI]). An alternative approach is to generate parasite dynamics by arbitrarily deciding on a day of 213 

recurrence for a patient, then assigning the recurrence as containing recrudescences and/or re-214 

infections (e.g.(26)). It would then be straightforward to draw the parasite numbers in each clone 215 

from a uniform distribution but a PK/PD model was chosen for the ability to easily test different 216 

levels of drug failure,  for increased realism, and to allow future users to easily re-calibrate this 217 

methodology with parameters of their choice. Pharmacokinetic parameters varied between patients 218 

and pharmacodynamic parameters varied between clones by drawing them from distributions of PK 219 

and PD parameters (Table S1 [SI]) for full parameter lists, and additional considerations.  220 

The number of initial clones in each patient was drawn from a distribution of multiplicity of infection 221 

(MOI) that depends on local transmission intensity (MOI ranges between 1 and 5; see Figure S4 of 222 

SI]; the starting parasitaemia of each clone was drawn from a log-uniform distribution between 1010 223 

and 1011. We describe parasitaemia in terms of parasite counts, rather than parasite densities. We 224 

do this because the models track changes in parasite counts over time and we do not parameterize 225 

patients in such a way that would allow us to easily convert counts to parasite densities (i.e., 226 

patients do not have parameters for blood volume, white blood cell (WBC) count or red blood cell 227 

count, etc.), nor would including these parameters aid the mechanistic simulation of the model or 228 

improve the accuracy of the results. For reference, assuming a patient with 4.5L of blood and a WBC 229 

count of 8,000/μl of blood, parasitaemia of 1010 and 1011  would correspond to densities of 2,222 230 

parasites/μl of blood and 22,222 parasites/μl of blood respectively, per WHO counting procedure 231 

(27). Previous modelling approaches used 1012 parasites as the upper limit of parasitaemia; this level 232 

of parasitaemia is likely to be lethal or at least exceed the maximum parasite density exclusion 233 

criteria in a clinical trial (typically 100,000 parasites /μl); hence we used 1011 as the upper limit for 234 

any single clone at the time of treatment. The number of reinfections that occurred during follow-up 235 

was determined by the parameter FOI which we used as our measure of transmission intensity 236 

(Section 2.2 of [SI]). The days on which reinfections occurred was drawn from a Poisson distribution 237 

whose mean was the FOI. Reinfections were assumed to emerge from the liver at a count of 105 238 

parasites (28, 29)  [SI]. PK parameters were varied between patients and PD parameters were varied 239 

between malaria clones such that each patient and clone responded differently to treatment (see 240 

[SI], Table S1 for table of PK/PD parameter means and associated coefficients of variation [CV]). The 241 

growth rate of each clone was assumed to be identical for every clone and set to 1.15/day as in 242 

previous modelling work (23, 30); this is equivalent to a parasite multiplications rate of 10  per 48 243 

hour cycle. The simulation assumed that if the total parasitaemia (i.e. the sum of parasitaemia of all 244 

clones) in a patient at any time, reached 1012, then density-dependent effects, such as fever, acted 245 

to control and stabilise the parasitaemia, effectively setting the growth rate of every clone in that 246 

patient to 0. Aside from this density-dependent effect, we did not attempt to model patient 247 

acquired immunity as accurately modelling this acquisition is notoriously difficult. It is likely to affect 248 

recrudescent and re-infecting clones equally such that we would not expect it to alter how recurrent 249 

infections are classified. We did not model parasite sequestration (see (31) for justification).  The 250 

output of this PK/PD model was, for each patient, the exact number of parasites of each malaria 251 

clone (be that clone an initial infection or a reinfection) at each time-step of the model (days); see 252 

figure S1 [SI] for an example. A patient in a real TES would be removed from the trial and re-treated 253 
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when a recurrence occurred, but no such ethical imperative exists  in silico so we tracked the 254 

patients the full length of follow-up, with the advantage that we could determine if any initial clones 255 

were still present on the final day of follow-up, even though, in vivo, that patient may have been 256 

removed from the trial (right-censored) earlier due to a recurrence caused by reinfection.  257 

 258 

Modelling microsatellite genotyping and detectability of alleles 259 

Genotypes were assigned to every clone (both initial and reinfections) at seven microsatellite 260 

markers: 313, 383, TA1, polya, PfPK2, 2490 and TA109; alleles at each marker were defined by their 261 

length (base pairs), see details in part 2.3 of  [SI].   262 

The genotype of the initial malaria infection of each patient was taken on the day of treatment. This 263 

genotype signal is a composite of all the clone(s) present in the initial infection and is determined by 264 

the technical accuracy and sensitivity of genotyping (points (b) and (c) in the Background and see 265 

later). Each patient was then checked for recurrent parasites on days of follow-up in a typical clinical 266 

trial schedule i.e. day 3, 7, 14, 21 and 28 for AR-LF and additional days 35 and 42 for AS-MQ.  267 

On all days of follow-up except day 3, a recurrence was identified if the sum parasitaemia of all 268 

clones in a patient exceeded 108 which we assumed was the minimum parasitaemia at which 269 

detection by light microscopy was possible (32).  This corresponds to a parasite density of roughly 22 270 

parasites/μl of blood assuming a patient with 4.5L of blood and 8,000 WBC/μl. If total parasitaemia 271 

was less than 108 then recurrent parasites would not be observed by microscopy (and thus, the 272 

patient would not be genotyped on that day). On day 3, if total parasitaemia exceeded 108 but was 273 

<25% of the total parasitaemia on the initial sample, the patient continued in the trial; if parasites 274 

were present at >25% of initial parasitaemia, that patient was classed as an early treatment failure,  275 

per WHO procedure (1);. Genotyping of initial and recurrent samples was then simulated using the 276 

following 3-stage protocol: 277 

Firstly, we included a “sampling” limit: A finite volume of blood is available for genotyping. A 278 

parasite clone would not be detected if its density were so low that no parasites were included in 279 

the blood sample analysed.  Thus, the density and volume of the processed blood sample defined 280 

the limit of detection. We assumed this limit to be 108 (i.e., no clone present in less than 108 281 

parasites would be detected); see part 3 of [SI] for calculation and justification.  282 

Secondly, the “majority” allele for each microsatellite is the allele with the highest parasitaemia (if 283 

multiple clones share alleles at a marker, the allelic signal for that marker is the sum of parasitaemia 284 

of the clones). We assumed that for an allele to be detected, the parasitaemia of that allele must be 285 

≥25% of the parasitaemia of the majority allele; this reflects the sensitivity of microsatellite 286 

genotyping to infer low-frequency alleles.  287 

Finally, we included the chance that the length of each microsatellite may be mis-read due to 288 

genotyping errors such as stutter bands (7) . The chance of an  error of +/- length x was assumed to 289 

be described by the geometric distribution 0.8 * (0.2)
x
 , described in (17).  290 

The output of these simulations was, for each patient, the microsatellite alleles (quantified by their 291 

length in base-pairs for each loci) at each of the seven loci, observed in the initial sample, and at any 292 

recurrent infection in that patient. A small example (100 patients) is shown in [Supplementary file 1] 293 

This is exactly the data recorded in standard TESs (and is the input used for the Bayesian algorithm in 294 

vivo as in (17, 18)) so this data  formed the basis for our PCR-correction and failure rate estimates. 295 
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Terminology of results 296 

Our terms “Recurrent infection/Recurrence”, “Recrudescence” and “Reinfection” are consistent with 297 

the WHO terminology (2).   298 

We frequently use the additional term “true failure” to describe the failure rate that we know 299 

occurred during our simulations (and which is unknown in a real TES).  We determined whether each 300 

patient was a “true failure” based on parasitaemia: A patient was a true failure if, on the final day of 301 

follow-up (day 28 for AR-LF, day 42 for AS-MQ), they still harboured any parasites from any initial 302 

clone. The true failure rate is the frequency of these patients across the entire population. Our 303 

model tracked patients over the full length of follow-up, thus our “true failure” classification 304 

captured patients who would, in a real trial, have been removed earlier in the trial with a recurrent 305 

infection classified as a reinfection (and whose recrudescent clones would not then be observed).  306 

A key advantage of our in silico approach is its ability to interrogate the Bayesian algorithm; i.e., 307 

investigate diagnostic ability and determine in which circumstances it would misclassify recurrences. 308 

For these analyses, we separated true failures into ‘high’ and ‘low’ density recrudescence. The 309 

performance of PCR correction is likely to depend on its ability to detect genetic signals from low-310 

density clones. The detection limit for low-level genetic signals in our simulation was 25% (to reflect 311 

current genotyping sensitivities, described above) so its is useful to compare the methodologies 312 

when patients have high-density recrudesce (recrudescing clones are present at >25% in both initial 313 

and recurrent samples) and low-density clones. Technically, a high density recrudescence was 314 

defined as occurring when three conditions were met: (i) if there is a mixed infection of new and 315 

recrudescent clones on the day of recurrence, recrudescent clones must be >25% of the total 316 

infection (more specifically, the sum parasitaemia of all recrudescent clones on the day of 317 

recurrence must be >25% the sum parasitaemia of all clones on the day of recurrence)) and (ii), 318 

Clones that recrudesce must constitute at least 25% of the initial infection (more specifically, the 319 

sum parasitaemia of all recrudescent clones on the day of recurrence must have been  >25% of the 320 

total parasitaemia of all clones in the initial sample). )  (iii) the total number of parasites in 321 

recrudescing clones on the day of recurrence must be ≥108 (to be consistent with the sampling limit 322 

defined above).  If any one of these conditions is not met then the failure is defined as “low density”.  323 

In this manner, we determined the true classification of each recurrence as a reinfection, high 324 

density recrudescence or low density recrudescence. 325 

Match counting algorithm 326 

A match counting algorithm compared the number of microsatellite loci that have at least a single 327 

allele shared between the initial and recurrent sample (termed a “matching” loci). Typically, use of 328 

microsatellite markers in vivo  requires a high number of matching loci to classify an infection as 329 

recrudescent (either all loci, or permitting a single locus not to match, i.e.: (4, 15, 16)). Herein, with 330 

the 7 loci modelled, we vary the threshold number of matching loci required to classify a 331 

recrudescence to determine the impact of this choice of threshold on failure rate estimates.  This is a 332 

counting algorithm where a recurrent infection is defined as a recrudescence when the number of 333 

matching loci is greater than or equal to a specified threshold. Six threshold values were analysed for 334 

this method: 2, 3, 4, 5, 6 and 7 matching loci (e.g. if a recurrent infection had 3 matching loci with 335 

the initial infection, that recurrence was classified as a recrudescence with a threshold of 2 or 3 loci, 336 

but as a reinfection with the other thresholds.  337 

Bayesian analysis method 338 
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We used the Bayesian analysis method described in (17) to interpret our simulated results and 339 

obtain posterior probabilities of recrudescence for each patient. In brief, the Bayesian algorithm 340 

uses a Markov chain Monte Carlo approach to sample from the posterior probability of 341 

recrudescence for each sample, with the ratio of likelihoods of a reinfection versus a recrudescence 342 

derived from the frequencies of the observed alleles. The algorithm jointly estimates several key 343 

parameters, such as the genotyping error rate, and accounts for missing data by sampling hidden 344 

alleles.  The data input into the Bayesian algorithm in our simulations is the same as occurs in 345 

analysis of in vivo trial data, i.e., the microsatellite profile of initial and recurrent infections in each 346 

patient as shown in [Supplementary file 1].  347 

The Bayesian analysis was then used to define a recurrence as being a recrudescence when posterior 348 

probability of recrudescence in that patient exceeded a value p, where p lies between 0 and 1.  349 

Note that the Bayesian algorithm is applied to our simulated data-sets in the same way it is applied 350 

to in vivo data (described in (17)). Crucially, this means that the priors for all parameters are 351 

uninformative – we are not calculating any given parameter in the mPK/PD framework and then 352 

using that parameter as a prior for the Bayesian algorithm (which would clearly invalidate results). 353 

Note, though, that posterior estimates from (17) are used to inform the chance of allele length being 354 

mis-read in the mPK/PD model, described above.  355 

Assessment of algorithm accuracy 356 

Both the match-counting algorithm and Bayesian analysis classified a recurrent infection as either 357 

reinfection or recrudescence depending on the choice of threshold (for the match counting 358 

algorithm) or posterior probability  p (for the Bayesian analysis). These classifications were then used 359 

to generate failure rate estimates for the simulated TES  using survival analysis (the WHO-360 

recommended method (1)) with the R packages survival (33) and survminer (34) . The failure 361 

estimates for both methods were then compared with the true failure rate to assess their accuracy.  362 

The distribution of the posterior probability of recrudescence calculated using the Bayesian 363 

algorithm was plotted for each scenario, with recurrences stratified into their true status: low-364 

density recrudescence, high-density recrudescence or reinfection. Receiver operator characteristic 365 

(ROC) curves were constructed using the posterior probability at which an infection would be 366 

classified as a recrudescence (from 0 to 1). The area under the ROC curve (AUC)  was used to 367 

quantify the diagnostic ability of the method (35), with an AUC of >0.8 considered to be a “good” 368 

test and an AUC of >0.9 considered to be an “excellent” test.  369 

We evaluated the ability of the Bayesian algorithm to detect low-density recrudescence, by 370 

calculating the posterior probability of recrudescence estimated by the Bayesian algorithm for each 371 

recurrent infection and categorizing each infection  as reinfection, low-density recrudescence or 372 

high-density recrudescence as described above.  373 

Results  374 

Results were generated for AR-LF and AS-MQ under the assumption of a failing and non-failing drug 375 

for three scenarios of transmission intensity (methods). Here we focus on the results for AR-LF while 376 

the results for AS-MQ are fully described in [SI].  377 

Failure rate estimates and comparison to true failure rate.  378 

 on January 16, 2020 at U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


The  match counting algorithm was sensitive to transmission intensity; no threshold value of 379 

matching loci at which a recurrence was classified as recrudescent was able to accurately estimate 380 

true failure rate across all transmission scenarios for either failing (Figure 1) or non-failing (Figure 2) 381 

AR-LF. Failure rate estimates declined as the threshold  increased. Failure rate estimates increased 382 

as transmission increased, presumably due to the greater number of reinfections, some of which will 383 

be misclassified as recrudescences; this effect was greater at low thresholds when the probability of 384 

such misclassification was greater. A threshold of 4 matching loci produced estimates close to the 385 

true failure rate for all non-failing AR-LF scenarios. For failing AR-LF scenarios, a threshold of 3 386 

matching loci produced the closest estimate to true failure in the low transmission scenario, and a 387 

threshold of 4 matching loci produced the closest estimate in the high transmission scenario, with 388 

the medium transmission scenario intermediate between the two. However, using a threshold of 3 389 

matching loci in a high transmission scenario over-estimated failure rate (estimated failure rate of 390 

0.18 compared to a true failure rate of 0.1). A threshold of 4 matching loci gave an estimate of 0.08 391 

relative to a 0.0997 true failure rate for the failing, medium transmission scenario and an estimate of 392 

0.077 relative to a true failure rate of 0.0965 for the failing, low transmission scenario. A threshold of 393 

7 matching loci resulted in extremely large under-estimates of failure rates for failing AR-LF: 0.005 394 

relative to true failure rate of 0.0965 in the low transmission scenario, 0.008 relative to true failure 395 

of 0.0997 in the medium transmission scenario and 0.006 relative to true failure rate of 0.1 in the 396 

high transmission scenario.  397 

In contrast to the match-counting method, the Bayesian algorithm recovered true failure rate to a 398 

high degree of accuracy across all transmission settings and for both calibrations of true drug failure 399 

rate (Figure 1 and Figure 2). Values of the posterior probability of recrudescence, p, used to 400 

distinguish recrudescence from reinfection between 0.1 and 0.9 produced good, consistent failure 401 

rates estimates with only a slight decline as p increased; using p = 1 to classify a recrudescence 402 

resulted in a substantial decrease in failure rate estimates. For all non-failing and failing drug 403 

scenarios, treating all infections with p ≥ 0.1 as recrudescence generated a failure rate estimate 404 

within 0.01 of the true failure rate. 405 

Receiver Operator Characteristic (ROC) curves for the Bayesian algorithm. 406 

The general trend was that the AUC of the ROC curve decreased as transmission intensity increased 407 

(Figure 3), with values of 0.872 and 0.835 in the failing and non-failing high transmission scenarios 408 

respectively – these correspond to a “good” diagnostic test. AUC was higher for any given 409 

transmission scenario in failing AR-LF than non-failing AR-LF. When the ROC curve was calculated for 410 

only high-density recrudescence AUC increased to ≥0.968 in all scenarios – an “excellent” diagnostic 411 

test.  412 

Distribution of posterior probability of recrudescence 413 

Figure 4 shows the distribution of the posterior probabilities of recrudescence for all recurrences, 414 

stratified according to the true classification of their recurrence: Reinfection, low-density 415 

recrudescence, or high-density recrudescence. The distributions were nearly binary in every 416 

scenario: Nearly all posterior probabilities in the patient population were <0.1 or≥0.9. Some trends 417 

here were intuitive (note different scales on the Y axes) : i.e., larger number of reinfections occurred 418 

as transmission intensity increased and larger number of recrudescences occurred in scenarios in 419 

which  failing drugs were administered. The small number of patients whose infections had 420 

estimated probabilities of recrudescence between (but not including) 0.1 and 0.9 was reflected in 421 

the minor changes in failure rate estimates as p changed in Figure 1 and Figure 2.  422 
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Most patients whose recurrence had   p <0.1 were reinfections. Given that ≥0.1 was the choice of p 423 

that produces the most accurate failure rate estimate (Figure 1 and Figure 2), the cause of the 424 

(slight) under-estimate of failure rate was due to the proportion of patients with infections at p <0.1  425 

who had, in reality, recrudescent infections. In simulations of failing drugs, at all transmission 426 

intensities, ~5% of recurrent infections that had p <0.1 were truly recrudescent infections . For 427 

simulations of non-failing drugs, at all transmission intensities , ~2.5% of recurrent infections that 428 

had p <0.1were truly recrudescent infections. Notably most of these were low density 429 

recrudescence; only 0.03%-0.05%  of recurrent infections that had p <0.1 were high-density 430 

recrudescences  in simulations of failing drugs, and 0.02%-0.06% of recurrent infections that had p 431 

<0.1 were high-density recrudescences in simulations of non-failing drugs . There were a small 432 

number of recurrent infections with p ≥0.1 which were truly reinfections but in all scenarios this 433 

number was small relative to the number of recurrent infections that had  p <0.1 and were truly 434 

recrudescent.  435 

Consequently, the under-estimation of failure rate that occurs due to truly recrudescent infections 436 

having p <0.1 was greater than the over-estimation due to reinfections having p ≥0.1; thus these 437 

reinfections with p ≥0.1 were not leading to an over-estimation of failure rate.  438 

Figure 1, Figure 2 and Figure 4 show that over-estimation of failure rate due to misclassification of 439 

reinfection as recrudescence did not significantly affect the Bayesian algorithm due to its high 440 

specificity; nearly all reinfections have a posterior probability of recrudescence of <0.1. A slight-441 

under-estimate of failure rate occurred with all values of p ≥0.1-≥0.9 inclusive to classify a 442 

recrudescence, due to the algorithm assigning posterior probabilities of <0.1 to a small proportion of 443 

infections with low density recrudescence.   444 

Determinants of posterior probability of recrudescence 445 

Figure 5 is a contour plot showing the estimated posterior probabilities of recrudescence estimated 446 

by the Bayesian algorithm as a function of the densities of the recrudescent clone(s) in the recurrent 447 

and initial sample. There was a clear trend of the posterior probability of recrudescence increasing 448 

as both densities increase, reinforcing the result illustrated in Figure 4: the density of recrudescent 449 

clones was an important determinant of the posterior probability of recrudescence returned for a 450 

given patient. Errors in classification were due almost entirely to the finite sensitivity of genotyping 451 

causing some low-density clones to be missed during genotyping. 452 

 453 

Analysis of Artesunate-Mefloquine  454 

We simulated and analysed AS-MQ in the same manner as for AR-LF. Full results are shown in [SI]. 455 

Results were very consistent with those of AR-LF: The match counting algorithm for classifying 456 

recurrences as reinfection or recrudescence could not consistently provide accurate  failure rate 457 

estimates across a variety of scenarios and often resulted in extreme over or under-estimates of true 458 

failure rate, depending on the choice of threshold. The Bayesian analysis method generated failure 459 

rate estimates to a high degree of accuracy across all scenarios, although there was an under-460 

estimate of 1.6 percentage units in the high transmission, failing drug scenario. As with AR-LF, using  461 

p ≥ 0.1 to classify an infection as a recrudescence provided the most accurate failure rate estimate 462 

for AS-MQ in every scenario.  463 

Very low genetic diversity scenario  464 
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As expected, in the very low genetic diversity scenarios, failure rate estimates increased due to 465 

misclassification of reinfection as recrudescence (factor I) identified in the Background) [SI]. The 466 

match counting algorithm was unable to recover accurate failure rate estimates in any scenario. 467 

However, using a high threshold of matching loci to classify a recrudescence (6 or 7) did not lead to 468 

over-estimates of failure rate, even in a high transmission setting, under conditions of very low 469 

genetic diversity. Importantly, the Bayesian method recovered accurate failure rate estimates in  low 470 

genetic diversity  scenarios when using p ≥ 0.1 to classify a recrudescence [SI].  471 

Patients with sub-patent, undetectable parasitaemia during follow-up 472 

We calculated the number of patients who had undetectable, sub-patent parasitaemia on the final 473 

day of follow-up (i.e. a total <108  parasites, either reinfection or recrudescence), and the proportion 474 

of these patients who were harbouring sub-patent recrudescent infections. These results are shown 475 

in full in Table S3 of [SI]. The results we present above are based on analysis of patients with patent 476 

recurrent infections (i.e. those who have detectable parasites during follow-up). In our model, it is  477 

possible for a patient to be a true failure (i.e., fail to clear their initial parasite clones), but never 478 

have detectable levels of parasites (either recrudescent clones or reinfections), during follow-up 479 

(methods). If the number of these patients were large, it would induce bias in our results. However, 480 

the proportion total patients who were true failures but had no recurrent infection was extremely 481 

low (between 0 and 0.001 across all scenarios for non-failing and failing AR-LF), so we can assume 482 

duration of follow-up, at least in our simulations, was sufficiently long to capture nearly all failures 483 

and hence safely draw conclusions about the entire study population.  484 

 485 

Discussion 486 

Our in silico experiment showed that the Bayesian algorithm generated extremely accurate 487 

estimates of true failure rate across different transmission intensity and drug failure rate scenarios. 488 

In contrast, the match counting algorithm showed high potential for misclassification bias, with no 489 

single threshold able to consistently estimate the true failure rate.  490 

Our results highlight the important role that computer modelling approaches can play in evaluating 491 

the performance of genotyping-based classification algorithms. This kind of approach is essential for 492 

this evaluation because, unlike real field data, we know the true failure rate of drugs in silico so can 493 

readily identify the most accurate and/or robust method of analysis. In contrast, analysis of field 494 

data demonstrates that failure rate estimates vary depending on choice of methodology (e.g., 495 

between criteria used to define recurrence as reinfection or recrudescence, i.e. (11)) but, since the 496 

real failure rate in a clinical trial is unknown, it is not possible to demonstrate which  method is most 497 

accurate or robust. A further advantage of simulated datasets is that we can observe the conditions 498 

under which a method fails to return a correct classification (for example,  Figure 4). We are 499 

confident in our conclusions for several reasons.  500 

Our first main conclusion is that despite its wide use, match counting of microsatellites for 501 

distinguishing recrudescence from reinfection is not a robust approach  because the estimated drug 502 

failure rate is   highly dependent on the threshold used to define a recrudescence. By definition the 503 

same clone of malaria will have the same genotype between the initial and recurrent sample. 504 

However, the observed genotype (described by the microsatellite alleles) may differ due to issues 505 

inherent in the genotyping method (failure to detect minority alleles or errors in measuring base-506 

pair length of alleles) – accounting for this difference is the purpose of including a degree of 507 
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flexibility in the molecular correction process i.e., varying thresholds.  Use of microsatellites to 508 

correct trials in vivo has, up to this day, generally relied upon a simplified analysis method such as 509 

the match counting algorithm described here. Hwang et al. (16) used 8 markers and defined a match 510 

at 7 or more loci to be a recrudescence. Greenhouse et al. (4) investigated 6 markers, and 511 

subsequently used 4 to analyse samples, with a match at every locus being required to classify a 512 

recurrence as  a recrudescence. Mwangi et al. (15) used 5 loci and considered a match at 5 to be a 513 

recrudescence, 0 to be a reinfection, and intermediary values to be mixed infections. 514 

The high thresholds generally used to classify a recurrence as a recrudescence (either most, or all, of 515 

the available loci must match to define a recrudescence) likely results in substantial under-estimate 516 

of failure rate. For the in silico failing AR-LF results presented here, failure rate estimates with a 517 

threshold of 2 ranged between 15% in a low transmission scenario to 50% in a high transmission 518 

scenario, relative to true failure rates of ~10% (Figure 1). However, a threshold of 7 provided 519 

estimates that ranged between 0.5% and 0.6% relative to true failure rates of ~10% . For non-failing 520 

AR-LF (Figure 2) failure rate estimates with a threshold of 2 ranged from 7% in a low transmission 521 

scenario to 24% in a high transmission scenario, relative to true failure rates of ~2%. In other words, 522 

the potential bias induced by choice of a break-point for the match counting algorithm could result 523 

in either rejecting an efficacious drug or continuing to use a failing drug and this is further 524 

complicated by the sensitivity of the break-point to transmission intensity (Figure 1 and Figure 2); 525 

the same issues are present in using the match counting algorithm for AS-MQ [SI]. This is perhaps 526 

not surprising: In the context of genetic markers for classification of recurrent infections in TES, 527 

microsatellites are very similar to the marker glurp used in the WHO/MMV method i.e. are defined 528 

only as length polymorphism with no allelic families. This has led some commentators to suggest 529 

glurp is so unreliable that it should simply be omitted from the WHO/MMV method or used only to 530 

resolve disparate msp-1 and msp-2 results (11).   531 

The results presented here strongly suggest that stringent thresholds (i.e., requiring all or most loci 532 

to have matching alleles) will under -estimate failure rate (and over-estimate efficacy). With the 533 

seven microsatellites used in these simulations, failure rate estimates produced by the match 534 

counting algorithm varied with both the choice of threshold and the transmission intensity but in all 535 

scenarios a threshold of 5 matching loci under-estimated failure rate; either 3 or 4 produced the 536 

closest estimate (Figure 1 and Figure 2). A threshold of 2 would lead to large over-estimates of 537 

failure rate. The reason that stringent thresholds under-estimated failure rate is because low-density 538 

recrudescence can be overlooked in patients who have a polyclonal initial or recurrent infection. 539 

Note that the threshold producing the most accurate estimate increased from 3 to 4 as transmission 540 

increased from low to high – this is because in higher transmission areas there was a greater impact 541 

of reinfections incorrectly classified as recrudescence due to sharing alleles by chance.   However, 542 

this will be dependent on the genetic diversity of the markers used. 543 

When a match counting algorithm for interpreting microsatellite data is  used, we strongly suggest 544 

that  failure rates obtained with multiple thresholds  points are reported, (for example Plucinski et 545 

al. reported failure rate estimates based on thresholds of matching at all loci and matching at all 546 

except a single loci; their table 2). This reflects the difficulty (in our opinions, the impossibility) of 547 

identifying a robust threshold (our figures 1 and 2) a priori. Additionally, we suggest that stringent 548 

thresholds (requiring all or a very high proportion of loci to be matching) are generally avoided.  549 

Inaccuracies of failure rate estimates using the match counting algorithm were a concern for failing 550 

drugs; a threshold of 4 was a reasonable approach in our  non-failing drug scenarios as most 551 

recurrences were likely to be reinfection and 4 appeared to be a sufficient threshold to prevent 552 

over-estimation of failure rates due to misclassifying reinfections as recrudescence. Consequently, a 553 
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feasible approach for using microsatellites in TES would be to use the match counting algorithm 554 

initially, assess the failure rate estimates produced with a range of thresholds  and pass any result 555 

that indicates a drug failure rate of higher than 5% through a Bayesian algorithm for re-analysis. We 556 

note that in our results,  the estimates produced by each threshold are sensitive to transmission 557 

intensity, but even in a high transmission intensity, a threshold of 4 would  not mistakenly indicate 558 

that a failing drug was non-failing (Figure 1).   559 

Our second main conclusion is that application of the Bayesian algorithm produces relatively 560 

accurate and stable estimates of failure rate in all transmission scenarios for both failing and non-561 

failing with use of a posterior probability p of 0.1. This result is consistent for analysis of AR-LF, AS-562 

MQ and even for AR-LF in a very low genetic diversity setting, where a p of 0.1 is effective due to the 563 

high specificity of the Bayesian algorithm, i.e., misclassification of reinfection as recrudescence is 564 

extremely infrequent (Figure 4 and [SI]). However, note that in the very low diversity setting, failure 565 

rate estimates increased as transmission intensity increased, and in areas of higher transmission 566 

than we simulated here there may be a risk to accurate classification with this method; though this 567 

pre-supposes that low genetic diversity (characteristic of low-transmission settings) could occur 568 

within an area of high transmission.      569 

The type of PK/PD modelling that we used to generate parasite dynamics post-treatment has been 570 

widely validated and used by our group (e.g. (21, 22)) and the approach is being increasingly used by 571 

other groups (e.g. (36)). Results are highly robust for both AR-LF and AS-MQ (i.e., partner drugs with 572 

different lengths of post-treatment prophylaxis), different levels of transmission intensity, and 573 

different levels of drug failures and return an intuitive result (increased failure rate) when very low 574 

genetic diversity is simulated. We wish to underline the fact that there are a large number of PK/PD 575 

calibrations for AR-LF and AS-MQ in the field; we have chosen the parameterizations here [SI] based 576 

on our previous work and  because their role in the current study is solely to generate plausible 577 

profiles of parasite dynamics over time (i.e., figure 1 of (37)) and obtain genetic data with which we 578 

can evaluate different methods of molecular correction. We could describe parasite dynamics using 579 

other methods (for example, pre-determining a number of clones at a given time and randomly 580 

drawing their densities, e.g. (38)) but chose to use a PK/PD model for increased realism, relative 581 

simplicity, and to provide the ability for ourselves or other users to calibrate the model to their 582 

liking. The crucial part of our methodology is how we calculate detection of microsatellites in blood 583 

samples; specifically that it is based on the relative density of  alleles in the parasitaemia (and thus 584 

dependant on relative clone numbers) and accounts for a “sampling limit” and inherent errors in 585 

reading microsatellite lengths. We are confident that while use of different PK/PD parameters would 586 

change a given patient’s parasite dynamic profile, anything but the most novel parameterization 587 

would be unlikely to sufficiently change our results given that a) we simulate 10,000 patients and b) 588 

parameters are varied within the model such that a large range of alternative parameterization is 589 

already at least partly included in our simulations.  590 

The main practical drawback of the Bayesian algorithm is the need to run a Bayesian analysis. The 591 

methodology is published and available (17) but application requires some experience in 592 

programming and Bayesian statistics. The analysis is computationally expensive (see [SI]) and may be 593 

difficult to run on an average personal computer. However, this should not be allowed to be an 594 

impediment, given the importance of accurate malaria drug trials, and one solution to this would be 595 

for a central body to offer such analyses as a service, or to support application of the algorithm 596 

through an internet-based application.   597 

One problem with the microsatellite genotyping approach  is its inability to detect low density 598 

“minority” clones (the limit here was set to 25%), a problem common to other markers such as the 599 
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WHO markers msp-1, msp-2, glurp (the peak height cut-off for ignoring a signal as noise is generally 600 

between 10-20% (11)); the slight under-estimates of failure rate produced by Bayesian analyses 601 

occurred primarily because the algorithm is unable to correctly identify all low-density 602 

recrudescence (Figure 4 and 5) – this reflected minority alleles being missed during  amplification 603 

and sequencing. There is now considerable interest in using deep-sequenced amplicons as markers, 604 

because this method allows detection of alleles at very low frequencies (less than 2% of the 605 

frequency of the most frequent allele). We are currently investigating these markers, using a 606 

strategy analogous to that described above, to investigate their potential role in molecular 607 

correction. Even if they prove accurate and robust, it is likely to be several years before they are 608 

validated, a consensus methodology identified and routinely used in trials.  Meanwhile it appears 609 

that Bayesian analysis of a suite of microsatellite markers does constitute a robust and accurate 610 

method for analysis of malaria drug efficacy trials  611 

 612 

Author contributions 613 

SJ wrote and conducted the simulations, analysed the results and wrote the first draft of the 614 

manuscript  615 

MP wrote the Bayesian algorithm, analysed the results, and edited the manuscript 616 

EMH wrote the simulations and edited the manuscript 617 

KK wrote the simulations and edited the manuscript 618 

IH conceived the project, analysed the results and edited the manuscript  619 

 620 

Conflict of interest statement 621 

The authors declare no conflict of interest exists 622 

Funding statement 623 

This research was supported by: 624 

The Medical Research Council (grants G1100522 and MR/L022508/1), the Bill and Melinda Gates 625 

Foundation (grant 1032350) and the Malaria Modelling Consortium (grant UWSC9757). MP was 626 

supported by the U.S. President’s Malaria Initiative. 627 

Role of the funding source(s) 628 

The funding source(s) had no role in study design, collection, analysis or interpretation of data, the 629 

writing of the report or the decision to submit the paper for publication. 630 

Meeting(s) where the information has previously been presented 631 

 632 

 on January 16, 2020 at U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


Corresponding author contact information 633 

Sam Jones,  Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool 634 

L3 5QA, United Kingdom, sam.jones@lstmed.ac.uk 635 

Secondary contact 636 

Ian Hastings,  Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, 637 

Liverpool L3 5QA, United Kingdom, ian.hastings@lstmed.ac.uk 638 

 639 

Current affiliations 640 

 641 

Acknowledgements 642 

The authors would like to thank Simon Wagstaff and Andrew Bennett of the scientific computing 643 

department at the Liverpool School of Tropical Medicine for providing access to the high-644 

performance computing facilities used to generate the results described herein. 645 

We would also like to thank five staff members from the Centers for Disease Control and Prevention 646 

for their thoughtful commentary on this manuscript  647 

The findings and conclusions in this report are those of the authors and do not necessarily represent 648 

the official position of the Centers for Disease Control and Prevention.  649 

 650 

 651 

References 652 

 653 

1. World Health Organization. 2009. Methods for surveillance of antimalarial drug efficacy. 654 
2. World Health Organization. 2016. GLOBAL TECHNICAL STRATEGY FOR MALARIA 2016–2030. 655 
3. World Health Organization MfMV. 2008. Methods and techniques for clinical trials on 656 

antimalarial drug efficacy: Genotyping to identify parasite populations. 657 
4. Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, Dorsey G. 2006. 658 

VALIDATION OF MICROSATELLITE MARKERS FOR USE IN GENOTYPING POLYCLONAL 659 
PLASMODIUM FALCIPARUM INFECTIONS. The American journal of tropical medicine and 660 
hygiene 75:836-842. 661 

5. Nyachieo A, C VANO, Laurent T, Dujardin JC, D'Alessandro U. 2005. Plasmodium falciparum 662 
genotyping by microsatellites as a method to distinguish between recrudescent and new 663 
infections. Am J Trop Med Hyg 73:210-3. 664 

6. Greenhouse B, Dokomajilar C, Hubbard A, Rosenthal PJ, Dorsey G. 2007. Impact of 665 
Transmission Intensity on the Accuracy of Genotyping To Distinguish Recrudescence from 666 
New Infection in Antimalarial Clinical Trials. Antimicrobial Agents and Chemotherapy 667 
51:3096-3103. 668 

 on January 16, 2020 at U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


7. Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP. 1999. Twelve microsatellite markers for 669 
characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 670 
119 ( Pt 2):113-25. 671 

8. Malvy D, Torrentino-Madamet M, L'Ollivier C, Receveur M-C, Jeddi F, Delhaes L, Piarroux R, 672 
Millet P, Pradines B. 2018. Plasmodium falciparum Recrudescence Two Years after 673 
Treatment of an Uncomplicated Infection without Return to an Area Where Malaria Is 674 
Endemic. Antimicrobial agents and chemotherapy 62:e01892-17. 675 

9. Russo G, L'Episcopia M, Menegon M, Souza SS, Dongho BGD, Vullo V, Lucchi NW, Severini C. 676 
2018. Dihydroartemisinin-piperaquine treatment failure in uncomplicated Plasmodium 677 
falciparum malaria case imported from Ethiopia. Infection 46:867-870. 678 

10. Plucinski MM, Huber CS, Akinyi S, Dalton W, Eschete M, Grady K, Silva-Flannery L, Mathison 679 
BA, Udhayakumar V, Arguin PM, Barnwell JW. 2014. Novel Mutation in Cytochrome B of 680 
Plasmodium falciparum in One of Two Atovaquone-Proguanil Treatment Failures in Travelers 681 
Returning From Same Site in Nigeria. Open forum infectious diseases 1:ofu059-ofu059. 682 

11. Messerli C, Hofmann NE, Beck HP, Felger I. 2017. Critical Evaluation of Molecular Monitoring 683 
in Malaria Drug Efficacy Trials and Pitfalls of Length-Polymorphic Markers. Antimicrob 684 
Agents Chemother 61. 685 

12. Walsh PS, Erlich HA, Higuchi R. 1992. Preferential PCR amplification of alleles: mechanisms 686 
and solutions. PCR Methods Appl 1:241-50. 687 

13. Farnert A, Arez AP, Babiker HA, Beck HP, Benito A, Bjorkman A, Bruce MC, Conway DJ, Day 688 
KP, Henning L, Mercereau-Puijalon O, Ranford-Cartwright LC, Rubio JM, Snounou G, Walliker 689 
D, Zwetyenga J, do Rosario VE. 2001. Genotyping of Plasmodium falciparum infections by 690 
PCR: a comparative multicentre study. Trans R Soc Trop Med Hyg 95:225-32. 691 

14. Juliano JJ, Gadalla N, Sutherland CJ, Meshnick SR. 2010. The perils of PCR: can we accurately 692 
'correct' antimalarial trials? Trends Parasitol 26:119-24. 693 

15. Mwangi JM, Omar SA, Ranford-Cartwright LC. 2006. Comparison of microsatellite and 694 
antigen-coding loci for differentiating recrudescing Plasmodium falciparum infections from 695 
reinfections in Kenya. International Journal for Parasitology 36:329-336. 696 

16. Hwang J, Alemayehu BH, Reithinger R, Tekleyohannes SG, Takele T, Birhanu SG, Demeke L, 697 
Hoos D, Melaku Z, Kassa M, Jima D, Malone JL, Nettey H, Green M, Poe A, Akinyi S, 698 
Udhayakumar V, Kachur SP, Filler S. 2013. In Vivo Efficacy of Artemether-Lumefantrine and 699 
Chloroquine against Plasmodium vivax: A Randomized Open Label Trial in Central Ethiopia. 700 
PLOS ONE 8:e63433. 701 

17. Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. 2015. Robust Algorithm 702 
for Systematic Classification of Malaria Late Treatment Failures as Recrudescence or 703 
Reinfection Using Microsatellite Genotyping. Antimicrobial Agents and Chemotherapy 704 
59:6096-6100. 705 

18. Davlantes E, Dimbu PR, Ferreira CM, Florinda Joao M, Pode D, Felix J, Sanhangala E, Andrade 706 
BN, Dos Santos Souza S, Talundzic E, Udhayakumar V, Owens C, Mbounga E, Wiesner L, 707 
Halsey ES, Martins JF, Fortes F, Plucinski MM. 2018. Efficacy and safety of artemether-708 
lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for the 709 
treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 710 
2017. Malar J 17:144. 711 

19. Plucinski MM, Dimbu PR, Macaia AP, Ferreira CM, Samutondo C, Quivinja J, Afonso M, 712 
Kiniffo R, Mbounga E, Kelley JS, Patel DS, He Y, Talundzic E, Garrett DO, Halsey ES, 713 
Udhayakumar V, Ringwald P, Fortes F. 2017. Efficacy of artemether-lumefantrine, 714 
artesunate-amodiaquine, and dihydroartemisinin-piperaquine for treatment of 715 
uncomplicated Plasmodium falciparum malaria in Angola, 2015. Malar J 16:62. 716 

20. Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, Goldman I, Lucchi N, 717 
Stennies G, MacArthur JR, Udhayakumar V. 2015. Efficacy of artemether-lumefantrine and 718 

 on January 16, 2020 at U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire 719 
and Uige Provinces, angola. Antimicrob Agents Chemother 59:437-43. 720 

21. Hodel EM, Kay K, Hayes DJ, Terlouw DJ, Hastings IM. 2014. Optimizing the programmatic 721 
deployment of the anti-malarials artemether-lumefantrine and dihydroartemisinin-722 
piperaquine using pharmacological modelling. Malaria Journal 13:1-18. 723 

22. Kay K, Hastings IM. 2013. Improving pharmacokinetic-pharmacodynamic modeling to 724 
investigate anti-infective chemotherapy with application to the current generation of 725 
antimalarial drugs. PLoS Comput Biol 9:e1003151. 726 

23. Winter K, Hastings IM. 2011. Development, evaluation, and application of an in silico model 727 
for antimalarial drug treatment and failure. Antimicrob Agents Chemother 55:3380-92. 728 

24. Anonymous. 2013. R: A language and environment for statistical computing. R Foundation 729 
for Statistical Computing, Vienna, Austria. 730 

25. H. Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York.  731 
26. Dahal P, Guerin PJ, Price RN, Simpson JA, Stepniewska K. 2019. Evaluating antimalarial 732 

efficacy in single-armed and comparative drug trials using competing risk survival analysis: a 733 
simulation study. BMC Medical Research Methodology 19:107. 734 

27. World Health Organization. 2016. Malaria Parasite Counting, MALARIA MICROSCOPY 735 
STANDARD OPERATING PROCEDURE – MM-SOP-09.  736 

28. Stepniewska K, White NJ. 2008. Pharmacokinetic determinants of the window of selection 737 
for antimalarial drug resistance. Antimicrob Agents Chemother 52:1589-96. 738 

29. Garnham PCC. 1966. Malaria Parasites and other Haemosporidia. Blackwell Scientific 739 
Publications Ltd., 5, Alfred Street, Oxford. 740 

30. Simpson JA, Watkins ER, Price RN, Aarons L, Kyle DE, White NJ. 2000. Mefloquine 741 
Pharmacokinetic-Pharmacodynamic Models: Implications for Dosing and Resistance. 742 
Antimicrobial Agents and Chemotherapy 44:3414-3424. 743 

31. Jones S, Kay K, Hodel EM, Chy S, Mbituyumuremyi A, Uwimana A, Menard D, Felger I, 744 
Hastings I. 2019. Improving Methods for Analyzing Antimalarial Drug Efficacy Trials: 745 
Molecular Correction Based on Length-Polymorphic Markers msp-1, msp-2, and glurp. 746 
Antimicrob Agents Chemother 63. 747 

32. Siahaan L. 2018. Laboratory diagnostics of malaria. IOP Conference Series: Earth and 748 
Environmental Science 125:012090. 749 

33. T Therneau. 2015. _A Package for Survival Analysis in S_. version 2.38, https://CRAN.R-750 
project.org/package=survival. 751 

34. Alboukadel Kassambara MK. 2018. survminer: Drawing Survival Curves using 'ggplot2'. R 752 
package version 0.4.3, https://CRAN.R-project.org/package=survminer. 753 

35. Zweig MH, Campbell G. 1993. Receiver-operating characteristic (ROC) plots: a fundamental 754 
evaluation tool in clinical medicine. Clinical Chemistry 39:561-577. 755 

36. Dini S, Zaloumis S, Cao P, Price RN, Fowkes FJI, van der Pluijm RW, McCaw JM, Simpson JA. 756 
2018. Investigating the Efficacy of Triple Artemisinin-Based Combination Therapies for 757 
Treating Plasmodium falciparum Malaria Patients Using Mathematical Modeling. Antimicrob 758 
Agents Chemother 62. 759 

37. Jaki T, Parry A, Winter K, Hastings I. 2013. Analysing malaria drug trials on a per-individual or 760 
per-clone basis: a comparison of methods. Statistics in Medicine 32:3020-3038. 761 

38. Ken-Dror G, Hastings IM. 2016. Markov chain Monte Carlo and expectation maximization 762 
approaches for estimation of haplotype frequencies for multiply infected human blood 763 
samples. Malar J 15:430. 764 

 765 

 766 

 767 

 on January 16, 2020 at U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 on January 16, 2020 at U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 782 

FIGURES  783 

 784 

Figure 1: Failure rate estimates obtained using  the  match counting algorithm and the Bayesian analysis algorithm for  failing AR-LF under low, medium and high 785 

transmission scenarios. The true failure rate is denoted in each plot by the horizontal grey line. For the match counting algorithm, the  threshold for the number of 786 

matching loci at which a recurrence is classified as a recrudescence varies between  2 and 7.  For the Bayesian analysis, the cut-off for posterior probability at which a 787 

recurrence is classified as a recrudescence varies between ≥0.1 and ≥0.9.  788 

Figure 2: Failure rate estimates obtained using the match counting  algorithm and the Bayesian analysis algorithm for non-failing AR-LF under low, medium and high 789 

transmission scenarios. The true failure rate is denoted in each plot by the horizontal grey line. For the match counting algorithm, the  threshold for the number of matches 790 

at which a recurrence is classified as a recrudescence varies between  2 and 7.  For the Bayesian analysis, the cut-off for posterior probability at which a recurrence is 791 

classified as a recrudescence varies between ≥0.1 and ≥0.9.  792 

Figure 3: Receiver operator characteristic (ROC) curves showing diagnostic ability of the Bayesian analysis method for 3 scenarios of transmission intensity for non-failing 793 

and failing artemether-lumefantrine (AR-LF). ROC curves and area under the roc curve (AUC) are shown for all recrudescence and for high density recrudescence. A high 794 

density recrudescence was defined as explained in the main text.  795 

Figure 4: Distribution of the posterior probabilities of recrudescence estimated  by the Bayesian algorithm for 3 scenarios of transmission intensity for non-failing and failing 796 

artemether-lumefantrine (AR-LF). A high density recrudescence was defined as explained in the main text.  797 

Figure 5:  Contour plot of the posterior probability of recrudescence estimated by Bayesian algorithm as a function of the density of recrudescent clones (i.e., the 798 

proportion of the recrudescent clones in the total recurrent infection biomass) in the initial sample and the recurrent sample. This plot is the combined data of all 6 799 

scenarios modelled for artemether-lumefantrine (AR-LF). Each contour line indicates the posterior probability of recrudescence and the area between the lines the number 800 

of recurrent infections in the population with those posterior probabilities.  801 
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