1,107 research outputs found

    Separation and recovery of a hemicellulose-derived sugar produced from the hydrolysis of biomass by an acidic ionic liquid

    Get PDF
    ABSTRACT: Biomass processing with ionic liquids (ILs) has been one of the most topical research areas in recent years. However, separation and recovery of biomass products and ILs are currently a challenge. Recovery of produced monosaccharides from an IL postreaction solution and the possibility to reuse the IL are strongly required to guarantee the sustainability of biomass processing. The present study demonstrates a novel approach that aims at separating a biomass hemicellulose-derived product, namely, xylose, and 1-ethyl-3-methylimidazolium hydrogensulfate ([emim][HSO4]). High polarity of a postreaction system composed of xylose, IL, and water is one of the major hindrances in the separation performance. A proposed solution is fine-tuning of the system polarity by the addition of moderately polar acetonitrile. To scrutinize the potential of xylose and IL separation, phase equilibria of a system constituted by [emim][HSO4], water, and acetonitrile were studied. Additionally, preparative chromatography experiments with alumina as a stationary phase were performed to determine the conditions required for efficient separation of the sugar and the IL by selective adsorption of xylose on alumina in detriment of IL. The amount and treatment of the stationary phase, eluent polarity, and amount of loaded sample were also scrutinized in this study. Treatment of alumina was considered as a necessary step to achieve recovery yields of 90.8 and 98.1 wt% for the IL and xylose, respectively, as separate fractions.info:eu-repo/semantics/publishedVersio

    Crystal structure of 1-benzyl-3-methyl-1 H

    Get PDF

    3-(1-Methyl-3-imidazolio)propane­sulfonate: a precursor to a Brønsted acid ionic liquid

    Get PDF
    The title compound, C7H12N2O3S, is a zwitterion precursor to a Brønsted acid ionic liquid with potential as an acid catalyst. The C—N—C—C torsion angle of 100.05 (8)° allows the positively charged imidazolium head group and the negatively charged sulfonate group to inter­act with neighboring zwitterions, forming a C—H⋯O hydrogen-bonding network; the shortest among these inter­actions is 2.9512 (9) Å. The C—H⋯O inter­actions can be described by graph-set notation as two R 2 2(16) and one R 2 2(5) hydrogen-bonded rings

    Physicochemical Characterization of Ionic Liquid Binary Mixtures Containing 1-Butyl-3-methylimidazolium as the Common Cation

    Get PDF
    FCT/MEC (Portugal), through "Investigador FCT 2014" (IF/00190/2014 to A.B.P and IF/00210/2014 to J.M.M.A.),; Projects PTD C/EQU-EQU/29737/2017; PTDC/QEQFTT/32,89/2014; IF/00210/2014/CP1244/CT0003. This work was also supported by the Associate Laboratory for Green Chemistry LAQV (financed by national funds from FCT/MCTES (UID/QUI/50006/2019)) and cofinanced by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007265).Mixing ionic liquids (as well as mixing an inorganic salt in an ionic liquid) constitutes an easy, elegant methodology for obtaining new ionic materials. In this study, 3 ionic liquids (ILs) sharing a common cation were synthesized and mixed in 9 different proportions giving rise to 27 binary mixtures. Specifically, 1-butyl-3-methylimidazolium nitrate, [C4C1Im][NO3], 1-butyl-3-methylimidazolium chloride, [C4C1Im]Cl, and 1-butyl-3-methylimidazolium methanesulfonate, [C4C1Im][CH3SO3], were synthesized and characterized. They all share 1-butyl-3-methylimidazolium as the common archetypal cation. None of them (or any of their binary mixtures) is liquid at room temperature (T = 298.15 K), and two of them are only in the liquid state above temperatures of 343-353 K. Despite belonging to commonly used families of ILs, their handling and the study of their liquid properties (neat and mixtures) have become particularly difficult, mainly because of their tendency to solidify and their high viscosity (caused by hydrogen-bonded networks). The main goal of this work is to evaluate the thermal, dynamic, and volumetric properties of these compounds and their mixtures as well as the solid-liquid equilibria of their binary mixtures. Thermal properties, such as melting and glass-transition temperatures, were determined or calculated. Therefore, both density and viscosity have been measured and were used for the calculation of the isobaric thermal expansion coefficient, molar volumes, excess molar volumes, and viscosity deviations to linearity.authorsversionpublishe

    Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study

    Get PDF
    The structure and dynamics of ionic liquids (ILs) are unusual due to the strong interactions between the ions and counter ions. These microscopic properties determine the bulk transport properties critical to applications of ILs such as advanced fuel cells. The terahertz dynamics and slower relaxations of simple alkylammonium nitrate protic ionic liquids (PILs) are here studied using femtosecond optical Kerr-effect spectroscopy, dielectric relaxation spectroscopy, and terahertz time-domain spectroscopy. The observed dynamics give insight into more general liquid behaviour while comparison with glass-forming liquids reveals an underlying power-law decay and relaxation rates suggest supramolecular structure and nanoscale segregation

    Correction: Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures

    Get PDF
    Correction for ‘Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures’ by Kris Anderson et al., Green Chem., 2015, DOI: 10.1039/c5gc00720h

    Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures

    Full text link
    [EN] Carbon dioxide solubility in a set of carboxylate ionic liquids formulated with stoicheiometric amounts of water is found to be significantly higher than for other ionic liquids previously reported. This is due to synergistic chemical and physical absorption. The formulated ionic liquid/water mixtures show greatly enhanced carbon dioxide solubility relative to both anhydrous ionic liquids and aqueous ionic liquid solutions, and are competitive with commercial chemical absorbers, such as activated N-methyldiethanolamine or monoethanolamine.The authors would like to acknowledge PETRONAS for financial support of this research, and Cytec (especially Dr Al Robertson) for supplying some of the phosphonium ionic liquids used.Anderson, K.; Atkins, MP.; Estager, J.; Kuah, Y.; Ng, S.; Oliferenko, AA.; Plechkova, NV.... (2015). Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures. Green Chemistry. 17(8):4340-4354. https://doi.org/10.1039/c5gc00720hS43404354178Cenovus, http://www.cenovus.com/operations/technology/co2-enhanced-oil-recovery.htmlV. Alvarado and E.Manrique, Enhanced Oil Recovery: Field Planning and Development Strategies, Gulf Professional Publishing, Amsterdam, 2010British Petroleum , In Salah Gas, http://www.insalahco2.com/index.php?option=com_content&view=frontpage&Itemid=1&lang=enN. Stern , The Economics of Climate Change: The Stern Review, Cambridge University Press, Cambridge, 2007Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. Energies, 3(9), 1529-1575. doi:10.3390/en3091529S. Rackley , Carbon Capture and Storage, Elsevier Science, Oxford, 2009H. Huppert , Carbon Capture and Storage in Europe EASAC Policy Report 20, German National Academy of Sciences, Leopoldina, 2013Organisation for the Prohibition of Chemical Weapons (OPCW) , The Chemical Weapons Convention, http://www.opcw.org/html/db/cwc/eng/cwc_frameset.htmlRubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630-671. doi:10.1016/j.pecs.2012.03.003G. H. Koch , M. P. H.Brongers, N. G.Thompson, Y. P.Virmani and J. H.Payer, Corrosion Costs and Preventive Strategies in the United States FHWA-RD-01-156, CC Technologies Laboratories, Inc, NACE International, 2001Law Offices of Casper Meadows Schwartz & Cook, ‘$80 Million Recovery in Toxic Exposure Suit’, http://www.cmslaw.com/Verdicts-Settlements/80-Million-Recovery-in-Toxic-Exposure-Suit.shtmlL. Grunwald , U.S. EPA Cites UNOCAL for Spill Violations, Press Release, United States Environmental Protection Agency, 1995Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795yDu, N., Park, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO2separations. Energy Environ. Sci., 5(6), 7306-7322. doi:10.1039/c1ee02668bM. Freemantle , An Introduction to Ionic Liquids, RSC Publications, Cambridge, UK, 2010Earle, M. J., Esperança, J. M. S. S., Gilea, M. A., Canongia Lopes, J. N., Rebelo, L. P. N., Magee, J. W., … Widegren, J. A. (2006). The distillation and volatility of ionic liquids. Nature, 439(7078), 831-834. doi:10.1038/nature04451Forsyth, M., Howlett, P. C., Tan, S. K., MacFarlane, D. R., & Birbilis, N. (2006). An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 9(11), B52. doi:10.1149/1.2344826Fraser, K. J., & MacFarlane, D. R. (2009). Phosphonium-Based Ionic Liquids: An Overview. Australian Journal of Chemistry, 62(4), 309. doi:10.1071/ch08558K. R. Seddon , Ionic liquids: Designer solvents?, in The International George Papatheodorou Symposium: Proceedings, ed. S. Boghosian, V. Dracopoulos, C. G. Kontoyannis and G. A. Voyiatzis, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, 1999, pp. 131–135M. Deetlefs , M.Fanselow and K. R.Seddon, RSC Adv.W. Freyland , Coulombic Fluids: Bulk and Interfaces, Springer, Heidelberg, 2011Electrodeposition from Ionic Liquids, ed. F. Endres, D. MacFarlane and A. Abbott, Wiley-VCH, Weinheim, 2008Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, New Jersey, 2005Ionic Liquids: From Knowledge to Application, ed. N. V. Plechkova, R. D. Rogers and K. R. Seddon, American Chemical Society, Washington D.C., 2009Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677jIonic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013Ionic Liquids Further UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2014Ionic Liquids Completely UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2015Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887C. Villagrán , C. E.Banks, M.Deetlefs, G.Driver, W. R.Pitner, R. G.Compton and C.Hardacre, Chloride Determination in Ionic Liquids, in Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities - Transformations and Processes, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser., Vol. 902, American Chemical Society, Washington D.C., 2005, vol. 902, pp. 244–258J. L. Anthony , E. J.Maginn and J. F.Brennecke, Gas Solubilities in 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 260–269J. H. Davis Jr. , Working Salts: Syntheses and Uses of Ionic Liquids Containing Functionalized Ions, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 247–259Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2Capture by a Task-Specific Ionic Liquid. Journal of the American Chemical Society, 124(6), 926-927. doi:10.1021/ja017593dWang, C., Luo, X., Zhu, X., Cui, G., Jiang, D., Deng, D., … Dai, S. (2013). The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 3(36), 15518. doi:10.1039/c3ra42366bRamdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-Art of CO2Capture with Ionic Liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. doi:10.1021/ie3003705Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., & Huang, Y. (2012). Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science, 5(5), 6668. doi:10.1039/c2ee21152aYokozeki, A., & Shiflett, M. B. (2009). Separation of Carbon Dioxide and Sulfur Dioxide Gases Using Room-Temperature Ionic Liquid [hmim][Tf2N]. Energy & Fuels, 23(9), 4701-4708. doi:10.1021/ef900649cCabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2012). Carbon Dioxide in 1-Butyl-3-methylimidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations. The Journal of Physical Chemistry A, 116(6), 1605-1620. doi:10.1021/jp211211nCarvalho, P. J., Álvarez, V. H., Schröder, B., Gil, A. M., Marrucho, I. M., Aznar, M., … Coutinho, J. A. P. (2009). Specific Solvation Interactions of CO2on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. The Journal of Physical Chemistry B, 113(19), 6803-6812. doi:10.1021/jp901275bGoodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Zadigian, D. J., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide. Industrial & Engineering Chemistry Research, 50(1), 111-118. doi:10.1021/ie101688aGoodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Lopez, Z. K., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Effect of Water and Temperature on Absorption of CO2by Amine-Functionalized Anion-Tethered Ionic Liquids. The Journal of Physical Chemistry B, 115(29), 9140-9150. doi:10.1021/jp2015534Ferguson, J. L., Holbrey, J. D., Ng, S., Plechkova, N. V., Seddon, K. R., Tomaszowska, A. A., & Wassell, D. F. (2011). A greener, halide-free approach to ionic liquid synthesis. Pure and Applied Chemistry, 84(3), 723-744. doi:10.1351/pac-con-11-07-21Shiflett, M. B., Kasprzak, D. J., Junk, C. P., & Yokozeki, A. (2008). Phase behavior of {carbon dioxide+[bmim][Ac]} mixtures. The Journal of Chemical Thermodynamics, 40(1), 25-31. doi:10.1016/j.jct.2007.06.003Shiflett, M. B., & Yokozeki, A. (2009). Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures. Journal of Chemical & Engineering Data, 54(1), 108-114. doi:10.1021/je800701jShiflett, M. B., Drew, D. W., Cantini, R. A., & Yokozeki, A. (2010). Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate. Energy & Fuels, 24(10), 5781-5789. doi:10.1021/ef100868aCabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2011). Solubility of CO2in 1-Butyl-3-methyl-imidazolium-trifluoro Acetate Ionic Liquid Studied by Raman Spectroscopy and DFT Investigations. The Journal of Physical Chemistry B, 115(13), 3538-3550. doi:10.1021/jp111453aGurau, G., Rodríguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., & Rogers, R. D. (2011). Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie International Edition, 50(50), 12024-12026. doi:10.1002/anie.201105198Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., … Danten, Y. (2012). CO2 in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. The Journal of Physical Chemistry A, 116(20), 4890-4901. doi:10.1021/jp211689zJaniczek, P., Kalb, R. S., Thonhauser, G., & Gamse, T. (2012). Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid. Separation and Purification Technology, 97, 20-25. doi:10.1016/j.seppur.2012.03.003Ober, C. A., & Gupta, R. B. (2012). pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 51(6), 2524-2530. doi:10.1021/ie201529dStevanovic, S., Podgoršek, A., Pádua, A. A. H., & Costa Gomes, M. F. (2012). Effect of Water on the Carbon Dioxide Absorption by 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids. The Journal of Physical Chemistry B, 116(49), 14416-14425. doi:10.1021/jp3100377Stevanovic, S., Podgorsek, A., Moura, L., Santini, C. C., Padua, A. A. H., & Costa Gomes, M. F. (2013). Absorption of carbon dioxide by ionic liquids with carboxylate anions. International Journal of Greenhouse Gas Control, 17, 78-88. doi:10.1016/j.ijggc.2013.04.017Wang, G., Hou, W., Xiao, F., Geng, J., Wu, Y., & Zhang, Z. (2011). Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO2Absorption. Journal of Chemical & Engineering Data, 56(4), 1125-1133. doi:10.1021/je101014qWilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003Miyano, Y., & Fujihara, I. (2004). Henry’s constants of carbon dioxide in methanol at 250–500 K. Fluid Phase Equilibria, 221(1-2), 57-62. doi:10.1016/j.fluid.2004.04.017Fernandez, E. S., & Goetheer, E. L. V. (2011). DECAB: Process development of a phase change absorption process. Energy Procedia, 4, 868-875. doi:10.1016/j.egypro.2011.01.131Zhang, J., Zhang, S., Dong, K., Zhang, Y., Shen, Y., & Lv, X. (2006). Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chemistry - A European Journal, 12(15), 4021-4026. doi:10.1002/chem.200501015Saravanamurugan, S., Kunov-Kruse, A. J., Fehrmann, R., & Riisager, A. (2014). Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2. ChemSusChem, 7(3), 897-902. doi:10.1002/cssc.201300691J. Speight , Lange's Handbook of Chemistry, McGraw-Hill, New York, 16th edn, 2005, Section 1.18, pp. 1.310–1.314Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900dNitta, I., Tomiie, Y., & Koo, C. H. (1952). The crystal structure of potassium bicarbonate, KHCO3. Acta Crystallographica, 5(2), 292-292. doi:10.1107/s0365110x52000848Sass, R. L., & Scheuerman, R. F. (1962). The crystal structure of sodium bicarbonate. Acta Crystallographica, 15(1), 77-81. doi:10.1107/s0365110x62000158Adamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466gGottlieb, H. E., Kotlyar, V., & Nudelman, A. (1997). NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry, 62(21), 7512-7515. doi:10.1021/jo971176vSheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895Ramnial, T., Taylor, S. A., Bender, M. L., Gorodetsky, B., Lee, P. T. K., Dickie, D. A., … Clyburne, J. A. C. (2008). Carbon-Centered Strong Bases in Phosphonium Ionic Liquids. The Journal of Organic Chemistry, 73(3), 801-812. doi:10.1021/jo701289dDietzel, P. D. C., & Jansen, M. (2002). Tetramethylphosphonium hydrogen carbonate. Acta Crystallographica Section E Structure Reports Online, 58(9), o1003-o1004. doi:10.1107/s1600536802013168Li, H., Hou, Y., & Yang, Y. (2011). Tetraethylammonium bicarbonate trihydrate. Acta Crystallographica Section E Structure Reports Online, 67(8), o1991-o1991. doi:10.1107/s1600536811026080McMullan, R., & Jeffrey, G. A. (1959). Hydrates of the Tetran‐butyl and Tetrai‐amyl Quaternary Ammonium Salts. The Journal of Chemical Physics, 31(5), 1231-1234. doi:10.1063/1.1730574Smiglak, M., Hines, C. C., & Rogers, R. D. (2010). New hydrogen carbonate precursors for efficient and byproduct-free syntheses of ionic liquids based on 1,2,3-trimethylimidazolium and N,N-dimethylpyrrolidinium cores. Green Chemistry, 12(3), 491. doi:10.1039/b920003gMaton, C., Van Hecke, K., & Stevens, C. V. (2015). Peralkylated imidazolium carbonate ionic liquids: synthesis using dimethyl carbonate, reactivity and structure. New Journal of Chemistry, 39(1), 461-468. doi:10.1039/c4nj01301hBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hAdamová, G., Canongia Lopes, J. N., Rebelo, L. P. N., Santos, L. M. N. B., Seddon, K. R., & Shimizu, K. (2014). The alternation effect in ionic liquid homologous series. Phys. Chem. Chem. Phys., 16(9), 4033-4038. doi:10.1039/c3cp54584aAdamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466gM. B. Shiflett and A.Yokozeki, Phase Behaviour of Gases in Ionic Liquids, in Ionic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013, pp. 349–398Ibrahim, A. Y., Ashour, F. H., Ghallab, A. O., & Ali, M. (2014). Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine. Journal of Natural Gas Science and Engineering, 21, 894-899. doi:10.1016/j.jngse.2014.10.011Anonymous , Piperazine – Why It's Used And How It Works, The Contractor (Optimized Gas Treating, Inc.), Houston, 2008, 2 [4], http://www.ogtrt.com/files/contactors/vol_2_issue_4.pd

    Insight into the Hydration of Cationic Surfactants: A Thermodynamic and Dielectric Study of Functionalized Quaternary Ammonium Chlorides

    Get PDF
    Hydrophobic interactions are one of the main thermodynamic driving forces in self-assembly, folding, and association processes. To understand the dehydration-driven solvent exposure of hydrophobic surfaces, the micellization of functionalized decyldimethylammonium chlorides, XC10Me2N+Cl-, with a polar functional group, X = C2OH, C2OMe, C2OC2OMe, C2OOEt, together with the "reference" compound decyltrimethylammonium chloride, C10Me3N+Cl-, was investigated in aqueous solution by density measurements, isothermal titration calorimetry (ITC), and dielectric relaxation spectroscopy (DRS). From the density data, the apparent molar volumes of monomers and micelles were estimated, whereas the ITC data were analyzed with the help of a model equation, yielding the thermodynamic parameters and aggregation number. From the DRS spectra, effective hydration numbers of the free monomers and micelles were deduced. The comprehensive analysis of the obtained results shows that the thermodynamics of micellization are strongly affected by the nature of the functional group. Surprisingly, the hydration of micelles formed by surfactant cations with a single alkyl chain on quaternary ammonium is approximately the same, regardless of the alkyl chain length or functionalization of the headgroup. However, notable differences were found for the free monomers where increasing polarity lowers the effective hydration number
    corecore