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ABSTRACT  

Mixing ionic liquids (as well as mixing an inorganic salt in an ionic liquid) constitutes an easy, 

elegant methodology to obtain new ionic materials. In this study, three ionic liquids (ILs) sharing 

a common cation were synthesized and mixed in nine different proportions giving rise to twenty-

seven binary mixtures. Specifically, 1-butyl-3-methylimidazolium nitrate, [C4C1Im][NO3], 1-

butyl-3-methylimidazolium chloride, [C4C1Im]Cl, and 1-butyl-3-methylimidazolium 

methanesulfonate, [C4C1Im][CH3SO3], were synthetized and characterized. They all share 1-butyl-

3-methylimidazolium as the common, archetypal cation. None of them (or any of their binary 

mixtures) is liquid at the room temperature (T = 298.15 K) and two of them are only in the liquid 

state above temperatures of 343-353 K. Despite belonging to commonly used families of ILs, their 

handling and the study of their liquid properties (neat and mixtures) has become particularly 

difficult, mainly due to their tendency to solidify and their high viscosity (caused by hydrogen-

bonded networks). The main goal of this work is to evaluate the thermal, dynamic, and volumetric 

properties of these compounds and their mixtures, as well as the solid-liquid equilibria of their 

binary mixtures. Thermal properties, such as melting and glass transition temperatures were 

determined or calculated. Therefore, both density and viscosity have been measured, which were 

used for the calculation of the isobaric thermal expansion coefficient, molar volumes, excess molar 

volumes and viscosity deviations to linearity. 
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1. INTRODUCTION 

Since their discovery in 1914 to date, the number of synthesized and studied ionic liquids (ILs) 

had increased dramatically in the most diverse fields of interest.1-3 Their first applications were 

associated with the design of electrolytes for batteries in the electrochemical industry,4-7 and in 

several engineering processes.3,8-11 However, more recently, and due to the increasing knowledge 

about the cytotoxic and ecotoxic behavior of these compounds, several efforts have been made to 

utilize ILs in the pharmaceutical and medical fields.12-14 

The use of these compounds in these distinct applications is supported by their exceptional 

properties, such as the relatively low melting point, low flammability, negligible vapor pressure, 

high thermal and chemical stability, high ionic conductivity and high solvation ability.15-19 

Furthermore, those properties make them a feasible alternative to traditional and less 

environmentally friendly solvents.15-17 These new opportunities are also supported by their 

tuneability, in which enormous combinations can be achieved matching different cations and 

anions. This tuneability allows to obtain the desirable compound with the most favorable 

characteristics for each specific application.17,20 Despite the almost unmeasurable number of 

available ILs, the “tailoring” possibilities markedly increase when ILs binary and ternary mixtures 

are considered.21-23 

Considering the behavior of an ideal homogeneous mixture, it is expected that its properties are 

the result of the composition of each pure compound. However, and obviously, the linear behavior 

is simply an oversimplified model. Each mixture is a unique system, which may not follow exactly 

the expected behavior. 21,23,24 



 

Our laboratories have already devoted attention to this type of mixtures, including work which 

has been considered pioneering in the field.23-27 Their importance is well documented in two recent 

critical reviews.21,22 For instance, the ideal behavior of some mixtures containing either the same 

imidazolium-based cations or the same anion ([NTf2]⁻, [PF6]⁻ or [BF4]⁻) conjugated with different 

counterparts has been evaluated in terms of excess properties, exhibiting a linear behavior with 

very small excess molar volumes.23 In the case of protonic ammonium nitrate ILs binary mixtures, 

a close to ideal behavior was observed with small deviations on the excess molar volume.25 In 

another study where 1-butyl-3-methylimidazolium was the common cation in several binary 

mixtures, it was observed that while very small deviations in the molar volume were detected large 

deviations were observed for the viscosity.26 In contrast with the aforementioned mixtures, a 

marked non-linear behavior was observed in the ionic conductivity, density and viscosity of ILs 

and inorganic salts mixtures.27 

In general, volumetric ideal behavior is observed in IL binary mixtures, which does not mean 

that IL mixtures are ideal as liquid-liquid phase separation may occur.23,28 This fact highlights that 

a proper characterization of the mixtures must be performed prior to general assumptions based 

only on the properties of pure compounds. With this mindset, this work provides useful insights 

into the thermal, dynamic and volumetric properties, as well as the phase behavior of binary 

mixtures which contain a common, 1-butyl-3-methylimidazolium ([C4C1Im]+) cation, conjugated 

with either nitrate ([NO3]-), chloride (Cl-) or methanesulfonate ([CH3SO3]-) anions 

([C4C1Im]{[NO3](x)Cl(1-x)}, [C4C1Im]{[NO3](x)[CH3SO3](1-x)} and [C4C1Im]{[CH3SO3](x)Cl(1-x)}). 

The pure ionic liquids were selected based on their melting points lower than 373.15 K (true ionic 

liquids according to their arbitrary definition) and in the structurally simplest nature of the anions 

that are also hydrogen-bond formers. Furthermore, new interactions in the binary mixtures in the 



 

environment of the cation with the moderate hydrogen bonding ability and three strongly 

hydrogen-bonding anions can be established. The overall hydrogen-bonding ability of these 

aprotic ionic liquids is much weaker than that presented in our previous work25 where several 

binary mixtures of protonic alkylammonium nitrate ionic liquids have been studied. The data 

obtained in these experiments take an essential step regarding this new concept of mixing ILs to 

achieve different and more suitable properties compared to the pure compounds for various 

applications. 

 

2. EXPERIMENTAL SECTION 

2.1. Ionic Liquids Synthesis and Characterization. In terms of green chemistry, one of the 

issues with the use of ILs is their synthesis, which often generates halide salts or hydrogen chloride 

and large volumes of waste solvents. The remaining metal halide and moisture impurities are 

known to cause changes in their properties.29 In order to avoid this situation, several halide free 

synthetic methods have been considered in this work. 

For the synthesis of 1-butyl-3-methylimidazolium nitrate ([C4C1Im][NO3]), a procedure of 

synthesis developed by Ferguson et al.30 was applied, eliminating the use of halide ions and 

reducing significantly the need of organic solvents. In this process an aqueous solution of 1-butyl-

3-methylimidazolium hydrogen sulfate (0.135 mol; ≥ 95 % mass fraction purity, Sigma Aldrich, 

St. Louis, USA) was prepared, and mixed with an aqueous solution of strontium hydroxide 

octahydrate (0.156 mol; 95 % mass fraction purity, Sigma Aldrich, St. Louis, USA). The final 

reaction mixture was stirred and cooled during 20 hours at T = 277.15 K. The remaining precipitate 

was removed via filtration with silica gel, washed with water, and then discarded. A very dilute 



 

solution of [C4C1Im][OH] was neutralized with nitric acid (65 % mass fraction purity, Microchem 

system, Westborough, USA) to pH = 7. The excess of water was removed under vacuum using a 

freeze-drier during 6 days. The final product, 1-butyl-3-methylimidazolium nitrate, obtained as a 

solid, was further characterized. 

The synthesis of 1-butyl-3-methylimidazolium methanesulfonate ([C4C1Im][CH3SO3]) was 

performed in two steps. Firstly, butyl methanesulfonate was prepared by dissolving butanol (1.078 

mol; 99% mass fraction purity, Alfa Aesar, Massachusetts, USA) and trimethylamine (1.226 mol; 

45% mass fraction purity, Fluka, Munich, Germany) in toluene (800 cm3). Then, methanesulfonyl 

chloride (0.98 mol; ≥99% mass fraction purity, Fluka, Munich, Germany) was also dissolved in 

toluene, added dropwise to the previous mixture and cooled off in an ice bath to maintain the 

exothermic reaction temperature bellow T = 277.15 K. During 48 hours, the mixture was stirred at 

room temperature and precipitated triethylammonium chloride was removed by filtration. Then, 

toluene was removed from the filtrate in vacuo at T = 313.15 K. The remaining product was 

distilled at T = 343.15 K, 0.005 kPa pressure for 6-8 hours in a Büchi B-590 Kugelrohr apparatus 

originating a liquid distillate. This step was performed several times to assure the full toluene 

elimination. This intermediate product, butyl methanesulfonate was checked by NMR 

spectroscopy.  

For the synthesis of 1-butyl-3-methylimidazolium methanesulfonate, 1-methylimidazole 

(0.32mol; 99 % mass fraction purity, Sigma Aldrich, St. Louis, USA) was added to butyl 

methanesulfonate (0.32 mol) in an ethyl ethanoate solution (>99.5% mass fraction purity, Riedel-

de-Haën, Bucharest, Romania). The reaction product was separated by decantation and washed 

three times with toluene. Then, the product was dried in high vacuo at T = 348.15 K during 3 days. 

The final product, 1-butyl-3-methylimidazolium methanesulfonate was further characterized. 



 

Finally, for the synthesis of 1-butyl-3-methylimidazolium chloride ([C4C1Im]Cl), 1-

chlorobutane (2.53 mol; 99.5 % mass fraction purity, Sigma Aldrich, St. Louis, USA), was added 

to 1-methylimidazole (2.32 mol; 99 % mass fraction purity, Sigma Aldrich, St. Louis, USA). The 

reaction mixture was heated with stirring under dry reflux at T= 343.15 K during 6 days. The final 

product, 1-butyl-3-methylimidazolium chloride was obtained as a solid after the reaction was 

cooled to room temperature and was further characterized. 

The synthesis procedures are shown in Scheme 1, and the purification and characterization 

methods were identified in Table 1. The isolated products were characterized by 1H (Figures S1-

S3) and 13C NMR spectroscopy, elemental analysis and liquid secondary ion mass spectrometry 

(LSIMS). The 1H and 13C NMR spectra were recorded at room temperature using a Bruker Avance 

spectrometer (400 MHz) Bruker-Spectrospin 400. 1H NMR and 13C NMR spectra of the ILs were 

referenced with respect to tetramethylsilane. Elemental analysis (CHN) was carried out by the 

Analytical Services and Environmental Projects Unit (ASEP) at the Queen’s University of Belfast. 

The instrument used was the Perkin-Elmer Series II CHNS/O 2400 CHN Elemental Analyser, 

which provided analytical results within an uncertainty of 0.003 in wt of the theoretical values. 

LSIMS spectra were recorded using a Micromass Autospec X Series spectrometer with a 25 kV 

voltage. The mass spectra of liquid samples were recorded neat; the mass spectra of solid samples 

were recorded in a 3-nitrobenzylalcohol matrix. The water content was determined by Karl Fischer 

(KF) titration in a Metrohm 831 KF coulometer. 

The characterization of [C4C1Im][NO3]: 1H-NMR (400MHz, CDCl3): 𝛿 (ppm) 0.94 (t, 3H, 

CH3), 1.36 (m, 2H, CH2), 1.88 (m, 2H, NCH2CH2), 4.02 (s, 3H, NCH3), 4.25 (t, 2H, NCH2), 7.49 

(s, 1H, ArH), 7.56 (s, 1H, ArH), 9.79 (s, 1H, ArH); ≥ 97.5 % mass fraction purity; 13C-NMR (75 

MHz, d1-trichloromethane): δ/ppm = 137.46 (NCHN), 125.05 (NCH), 122.80 (NCH), 49.76 



 

(NCH2CH3), 35.18 (NCH3), 31.81 (CH2CH2CH3), 19.38 (CH2CH3), 13.2 (CH2CH3); Water 

content less than 400 ppm.  

The characterization of [C4C1Im][CH3SO3]: 1H-NMR (400MHz, CDCl3) 𝛿 (ppm) 0.96 (t, 3H, 

CH3), 1.38 (m, 2H, CH2), 1.89 (m, 2H, NCH2CH2), 2.75 (s, 3H, (SO3)CH3), 4.06 (s, 3H, NCH3), 

4.29 (t, 2H, NCH2), 7.60 (s, 1H, ArH), 7.70 (s, 1H, ArH), 9.79 (s, 1H, ArH); ≥ 98 % mass fraction 

purity; 13C-NMR (75 MHz, d1-trichloromethane): δ/ppm = 137.88 (NCHN), 124.17 (NCH); 

122.56 (NCH); 49.80 (NCH2CH3); 40.05 (NCH3); 36.51 (CH3S); 32.35 (CH2CH2CH3); 19.63 

(CH2CH3); 13.65 (CH2CH3); CHN analysis: % calculated C 46.13%, H 7.74% and N 11.96%; 

observed: C 45.89%, H 8.45% and N 11.61%; MS (ESI+) [m/z (rel. int. (%)]: M+ 139 (100, 

[C4C1Im]+); Water content less than 450 ppm. 

The characterization of [C4C1Im]Cl, 1H-NMR (400MHz, CDCl3): 𝛿 (ppm) 0.96 (t, 3H, CH3), 1.39 

(m, 2H, CH2), 1.91 (m, 2H, NCH2CH2), 4.14 (s, 3H, NCH3), 4.35 (t, 2H, NCH2), 7.61 (s, 1H, ArH), 

7.78 (s, 1H, ArH), 10.56 (s, 1H, ArH); ≥ 97 % mass fraction purity; 13C-NMR (75 MHz, d1-

trichloromethane): δ/ppm = 137.20 (NCHN), 126.31 (NCH), 123.6 (NCH), 48.01(NCH2CH3), 

34.12 (NCH3), 32.81 (CH2CH2CH3), 19.25 (CH2CH3), 13.37 (CH2CH3); CHN analysis: % 

calculated C 55.01%, H 8.66% and N 16.04%; observed: C 54.89%, H 8.73% and N 15.97%; MS 

(ESI+) [m/z (rel. int. (%)]: M+ 139 (100, [C4C1Im]+); Water content less than 600 ppm. 



 

Scheme 1. Synthesis Procedure Applied for Each IL Used in this Work 

[C4C1Im][NO3] 

 
 

[C4C1Im][CH3SO3] 

 
 

[C4C1Im]Cl 

 
 

 

Table 1. Designation, CAS Registry Number, Source, Purification Method, Purity, Analysis Method and Water Content of the 
Ionic Liquids Used in this Work. The Reagents Used in the Synthesis are Listed in Table S1 of SI 

component CAS Reg. No. source 
purification 

method 

purity 

(mass 
fraction) 

analysis 
method 

water 
content 

(ppm) 

1-butyl-3-
methylimidazolium 
nitrate 

[C4C1Im][NO3] 

179075-88-8 synthetized 

filtration, 
neutralization 
and vacuum 

dried

≥ 97.5 % 

1H and 13C 
NMRa; KF 
titrationb 

400 

1-butyl-3-
methylimidazolium 
methanesulfonate 

[C4C1Im][CH3SO3] 

342789-81-5 synthetized 
filtration, 

distillation and 
vacuum dried  

≥ 98 % 

1H and 13C 
NMRa; EAc; 
LSIMSd; KF 

titrationb 

450 

1-butyl-3-
methylimidazolium 
chloride 
[C4C1Im]Cl 

79917-90-1 synthetized vacuum dried ≥ 97 % 

1H and 13C 
NMRa; EAc; 
LSIMSd; KF 

titrationb 

600 

aNuclear Magnetic Resonance; bKarl Fischer titration; cElemental analysis; dLiquid secondary ion mass spectrometry 

 

  



 

2.2. Solid–liquid Phase Diagrams. A DSC Q2000 Differential Scanning Calorimeter (TA 

Instrument), with refrigerated cooling system, was used for the determination of the solid-liquid 

phase transitions and glass transition temperatures of the three pure ILs and their binary mixtures 

([C4C1Im][NO3] + [C4C1Im][CH3SO3], [C4C1Im][NO3] + [C4C1Im]Cl and [C4C1Im][CH3SO3] + 

[C4C1Im]Cl at different concentrations. Dry dinitrogen gas was purged through the DSC cell with 

a flow rate of ca. 20 cm3 min-1. All the samples, due to their hygroscopic character, were prepared 

in a glove box. Thermophysical data were collected at atmospheric pressure accordingly to the 

method developed by Stolarska et al..31 All the samples were initially heated from room 

temperature, at a rate of 2.5 K min-1. At this temperature, they were held for an isotherm of 25 

minutes, prior to two cycles of cooling and heating at rates of 2.5 K min-1 spaced by 10 min 

isothermal holding at the lower and upper end point temperatures. Solid-liquid phase transitions 

and glass transition temperatures were further analyzed using the TA Universal Analysis software. 

A dynamic visual method was also carried out to determine the solid-liquid transitions of the 

mixtures which correspond to the temperatures where the first liquid appears, and the last crystal 

disappears with a constant increment of temperature. The mixtures were prepared in glass vials 

equipped with stirring bars and using an analytical high-precision balance (0.01 mg resolution). 

The real molar composition of each compound is depicted in Tables S2-S4. The glass vials were 

thermostatized in either ethanol or silicon oil baths. Temperature was controlled using a four-wire 

platinum resistance thermometer coupled to a multimeter. The uncertainty of the SLE temperatures 

is estimated to be 3 K (u (T) = 3 K). 

2.3. Density and Viscosity. Measurements of density and viscosity of the pure ILs and their 

binary mixtures were performed in an automated SVM 3000 Anton Paar rotational Stabinger 

viscometer-densimeter at atmospheric pressure in the 293.15 - 363.15 K temperature range. A fast 



 

and effective thermostability was guaranteed using Peltier elements. The temperature uncertainty 

of the equipment is 0.02 K (u (T) = 0.02 K). For each IL sample duplicates were measured and the 

presented result is the average value from these measurements with a maximum relative standard 

deviation (RSD) of 0.0002 gꞏcm-3 for the density and 0.01 mPa.s for the viscosity. The uncertainty 

of the measurements, considering the purity and the sample handling, is estimated to be 0.001 

g.cm-3 (ur() = 0.001) for the density and 0.02 mPa.s (ur() = 0.02) for the viscosity.  

3. RESULTS AND DISCUSSION 

3.1. Thermal Properties of Pure Ionic Liquids. In the DSC temperature runs, the maximum 

of the endothermic peak of the melting transition obtained during the second heating cycle (at a 

heating rate of 2.5 K min-1) was considered. DSC curves of the pure compounds and different 

mixtures are depicted in Figures S4-S9 of Supporting Information (SI). Discrepancies between 

experimental and literature values are likely due to the different heating rates used, or to a different 

strategy of melting point determination (onset vs. peak), and to a different water content of the 

samples. All DSC runs were performed two times independently. The melting points of the pure 

ionic liquids are shown in Table 2, and an acceptable agreement in the transition temperatures with 

published data has been observed for the pure compounds ([C4C1Im][NO3], [C4C1Im][CH3SO3] 

and [C4C1Im]Cl).31-36 This table also presents the glass transition and the solid-phase transition 

temperatures determined in this work. For [C4C1Im][NO3], a solid-solid transition at T = 279 K 

was also observed, which is in accordance with the values reported by Strechan et. al.32 This 

presence of polymorphs in the nitrate family of ILs has been already studied and confirmed by 

several authors.32,37-40 Furthermore, the metastability of [C4C1Im]Cl was herein noticed, with the 

melting temperature present in the second heating cycle at T = 342 K without further 

crystallizations in the following cycles. For this pure compound, a glass transition temperature was 



 

found at T = 231 K. These results are in agreement with previous works which have evidenced the 

presence of a liquid-crystalline phase in metastable chloride based ILs.35,36 Furthermore, in the 

study of Yamamuro et. al,36 the authors noticed that the IL did not crystallize at the fusion 

temperature in the cooling cycle. In this study, the crystal was only formed again when the 

temperature was cooled down to T = 200 K and annealed at T = 290 K for approximately one day.36 

However, it should be noted that there are multiple measurements of ionic liquid transition 

temperatures determined by various groups and the results sometimes disagree since ionic liquids 

may be of different purities (most commonly, the impurities are water, or unreacted chemicals). 



 

Table 2. Experimental Melting Temperature, Tm, Glass Transition Temperature, Tg, Solid-Solid Transition 
Temperature, Ts-s, and Estimated Glass Transition Temperatures Via the To Parameter of the Vogel-Fulcher-
Tammann (VFT) Equation, for the Pure Ionic Liquids. a Many ILs Present an Empirical, Tg / Tm ≈ 2/3 Golden 
Rule. Experimental Measurements Performed at an Average Atmospheric Pressure of 102 kPa 

 [C4C1Im][NO3] [C4C1Im][CH3SO3] [C4C1Im]Cl 

Tm / K 308 348 342 

Tm / K from literature 309.1632 350.2533  341.8535 

  346.8534 34136 

   33831 

Tg / K n.a. 214b 231 

   230.7535 

   22536 

Ts-s / K 279   

 278.8   

T0 (VFT) / K 185.7 191.3 214.2 

(Tg / Tm) ≈ 2/3  0.6162b 0.6773 

a Standard uncertainties: u (T) = 3 K; u (P) = 1 kPa; bHypothetical glass transition obtained by the linear 
extrapolation from the two ILs mixtures in which the IL [C4C1Im][CH3SO3] is a component. 

 

3.2. Solid-Liquid Phase Diagrams of the Ionic Liquids Mixtures. The solid-liquid equilibria 

(SLE) temperature-composition phase diagrams were determined using the temperature of the 

minimum of the DSC peaks for the mixtures. The experimental results are grouped in Tables 2-5 

and illustrated in Figures 1-3. The SLE diagrams show two different types of phase behavior. Two 

binary mixtures ([C4C1Im]{[NO3](x)Cl(1-x)} (see Figure 2) and [C4C1Im]{[CH3SO3](x)Cl(1-x)} (see 

Figure 3) exhibit the usual eutectic behavior associated with an ideal or quasi-ideal mutual 

solubility of solid compounds. The eutectic point occurs at around T = 302 K for x[C4C1Im][NO3] ≈ 

0.9 for the system [C4C1Im]{[NO3](x)Cl(1-x)} and around T = 321 K at x[C4C1Im][CH3SO3] ≈ 0.45 for 

the binary system [C4C1Im]{[CH3SO3](x)Cl(1-x)}. Therefore, these mixtures present eutectic points 

close to room temperature. The chloride anion is small and it is able to hydrogen bond to two 



 

imidazolium cations at the same time, as it was demonstrated by the crystal structure.41 In contrast, 

the larger nitrate42 or methanesulfonate anions have weaker hydrogen bonding interactions.  

The other binary mixture, [C4C1Im]{[NO3](x)[CH3SO3](1-x)}, shows an interesting SLE behavior 

with the formation of a continuous solid solution (see Figure 1). This behavior revealed the 

complete miscibility of this binary mixture in the solid phase. The melting point temperatures 

decrease with the incorporation of [C4C1Im][NO3] in the binary system. This SLE behavior has 

been previously found in other binary mixtures of ionic liquids43,44 where the ions are similar in 

size and are replaced by others that do not alter the crystal behavior of the components. 

Figures 1-3 represent the glass transitions of the different binary mixtures. Taking into account 

that glasses are metastable with respect to crystallization, Tables 2-5 show the values calculated 

for the Tg / Tm ratio which is known as the popular golden rule.45,46 This rule reveals that if a liquid 

fails to crystallize on cooling it will become a brittle glass at 2/3 of its melting temperature. The 

pure compounds and their binary mixtures studied in this work show Tg / Tm values at about an 

average value of ≈ 2/3 (0.6666) following the golden rule. 

  



 

Table 3. Experimental SLE Temperature-Composition Data, T, Glass Transition Temperatures, Tg, and Tg / 
Tm Ratio for [C4C1Im]{[NO3](x)[CH3SO3](1-x)} Mixturesa. Experimental Measurements Performed at an 
Average Atmospheric Pressure of 102 kPa 

[C4C1Im]{[NO3](x)[CH3SO3](1-x)} T / K Tg / K Tg / Tm 

[C4C1Im]{[NO3]0.1[CH3SO3]0.9} 345 214 0.6212 

[C4C1Im]{[NO3]0.2[CH3SO3]0.8} 344 215 0.6249 

[C4C1Im]{[NO3]0.3[CH3SO3]0.7} 331 204 0.6164 

[C4C1Im]{[NO3]0.4[CH3SO3]0.6} 327 206 0.6289 

[C4C1Im]{[NO3]0.5[CH3SO3]0.5} 325 209 0.6426 

[C4C1Im]{[NO3]0.6[CH3SO3]0.4} 315 204 0.6481 

[C4C1Im]{[NO3]0.7[CH3SO3]0.3} - 202 - 

[C4C1Im]{[NO3]0.8[CH3SO3]0.2} 309 201 0.6511 

[C4C1Im]{[NO3]0.9[CH3SO3]0.1} 303 202 0.6672 

a Standard uncertainties: u (T) = 3 K, u (P) = 1 kPa and u (x) = 0.004 in molar fraction. 

  



 

Table 4. Experimental SLE Temperature-Composition Data, T, Glass Transition Temperatures, Tg, and Tg / 
Tm Ratio for [C4C1Im]{[NO3](x)Cl(1-x)} Mixturesa. Experimental Measurements Performed at an Average 
Atmospheric Pressure of 102 kPa 

[C4C1Im]{[NO3](x)Cl(1-x)} T / K Tg / K Tg / Tm 

[C4C1Im]{[NO3]0.1Cl0.9} 324 238 0.7351 

[C4C1Im]{[NO3]0.2Cl 0.8} 322 220 0.6832 

[C4C1Im]{[NO3]0.3Cl0.7} 325 217 0.6696 

[C4C1Im]{[NO3]0.4Cl0.6} 315 212 0.6741 

C4C1Im]{[NO3]0.5Cl0.5} 302 
213 

 

 313 0.6799 

[C4C1Im]{[NO3]0.6Cl0.4} 302 
211 

 

 313 0.6750 

[C4C1Im]{[NO3]0.7Cl0.3} 301 
208 

 

 312 0.6650 

[C4C1Im]{[NO3]0.8Cl0.2} 303 207 0.6820 

[C4C1Im]{[NO3]0.9Cl0.1} 302 204 0.6768 

[C4C1Im]{[NO3]0.95Cl0.05} 303 
204 

 

 305 0.6681 
aStandard uncertainties: u (T) = 3 K, u (P) = 1 kPa and u (x) = 0.004 in molar fraction.

  



 

Table 5. Experimental SLE Temperature-Composition Data, T, Glass Transition Temperatures, Tg, and Tg / 
Tm Ratio for [C4C1Im]{[CH3SO3](x)Cl(1-x)} Mixturesa. Experimental Measurements Performed at an Average 
Atmospheric Pressure of 102 kPa 

[C4C1Im]{[NO3](x)[ CH3SO3](1-x)} T / K Tg / K Tg / Tm 

[C4C1Im]{[CH3SO3]0.1Cl0.9} 333 228 0.6856 

[C4C1Im]{[CH3SO3]0.2Cl0.8} 326 225 0.6888 

[C4C1Im]{[CH3SO3]0.3Cl0.7} 319 223 0.6982 

[C4C1Im]{[CH3SO3]0.35Cl0.65} 321 223 0.6946 

[C4C1Im]{[CH3SO3]0.4Cl0.6} 322 227 0.7047 

[C4C1Im]{[CH3SO3]0.45Cl0.55} 321 219 0.6830 

[C4C1Im]{[CH3SO3]0.5Cl0.5} 321 222 0.6908 

[C4C1Im]{[CH3SO3]0.6Cl0.4} 331 223 0.6724 

[C4C1Im]{[CH3SO3]0.7Cl0.3} 336 221 0.6754 

[C4C1Im]{[CH3SO3]0.8Cl0.2} 339 216 0.6377 

[C4C1Im]{[CH3SO3]0.9Cl0.1} 345 216 0.6259 

aStandard uncertainties: u (T) = 3 K, u (P) = 1 kPa and u (x) = 0.004 in molar fraction.

 

  



 

 

Figure 1. Solid-liquid phase diagram of the mixture [C4C1Im]{[NO3](x)[CH3SO3](1-x)}, 
temperature versus mole fraction of [C4C1Im][NO3]: solid-liquid transition, ▲; and glass transition 
temperature, ▲. The solid lines are just guides to the eye representing the boundary between the 
phase regions.  

 

 

Figure 2. Solid-liquid phase diagram of the mixture [C4C1Im]{[NO3](x)Cl(1-x)}, temperature versus 
mole fraction of [C4C1Im][NO3]: solid-liquid transition, ●; and glass transition temperature, ●. The 
solid lines are just guides to the eye representing the boundary between the phase regions. 
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Figure 3. Solid-liquid phase diagram of the mixture [C4C1Im]{[CH3SO3](x)Cl(1-x)}, temperature 
versus mole fraction of [C4C1Im][CH3SO3]: solid-liquid transition, ■; and glass transition 
temperature, ■. The solid lines are just guides to the eye representing the boundary between the 
phase regions. 
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3.3. Density and Viscosity. For any compounds used in industrial and chemical applications 

the determination of fluid phase properties, such as the density and viscosity of the pure ILs and 

their binary mixtures is of crucial relevance. Density displays a very important role regarding the 

selection of the most appropriate compounds to be used in different purposes.2,47-49 The results for 

the pure ILs are depicted in Table S5 and Figure S10 of SI. In Table S6 of SI, a comparison with 

published values is shown. We are not aware of any previous experimental determinations of either 

density or viscosity for any of the studied binary mixtures. Our results are presented in Tables 6-8 

and illustrated in Figures 4-9. Based on our results, it was possible to state that the increment of 

the [C4C1Im][NO3] molar fraction leads to a decrease of both density and viscosity for the 

[C4C1Im]{[NO3](x)[CH3SO3](1-x)} mixture. The other systems, [C4C1Im]{[NO3](x)Cl(1-x)} and 

[C4C1Im]{[CH3SO3](x)Cl(1-x)}, which contain the [C4C1Im]Cl salt, reveal a similar behavior. In 

these mixtures, the increment of the [C4C1Im]Cl molar composition leads to a  reduction of density. 

An opposite behavior is observed in the viscosity trends. These results suggest that the chloride 

anion might play a major role on the thermophysical behavior of the mixtures which can be related 

to the hydrogen bonding capacity of this anion when is compared with the other anions used in 

this work.  



 

The temperature dependence of the density was determined applying the following expression 

for both pure ILs and their binary mixtures: 

ln (ρ / gꞏcm-3) = A0 + A1 ꞏ (T/K)               (1) 

where T is the absolute temperature and A0, and A1 are adjustable parameters. The correlation 

parameters are given in Table S7 of the SI together with the standard deviations (S. D.) which were 

calculated using the following expression: 

 

        (2) 

 

 

where property values and the number of experimental and adjustable data are represented by z 

and nDAT, respectively. 
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Table 6. Density, , and Viscosity, , of [C4C1Im]{[NO3](x)[CH3SO3](1-x)} Mixturesa. Experimental 
Measurements Performed at an Average Atmospheric Pressure of 102 kPa 

T / K  / gcm-3  / mPas T / K  / gcm-3  / mPas 

[C4C1Im]{[NO3]0.1[CH3SO3]0.9} [C4C1Im]{[NO3]0.2[CH3SO3]0.8} 

348.15 1.1383 34.98 348.15 1.1368 34.50 

353.15 1.1352 29.38 353.15 1.1336 29.04 

358.15 1.1320 24.94 358.15 1.1305 24.71 

363.15 1.1289 21.39 363.15 1.1274 21.27 

[C4C1Im]{[NO3]0.3[CH3SO3]0.7} [C4C1Im]{[NO3]0.4[CH3SO3]0.6} 
  333.15   1.1449  59.13 328.15 1.1469 70.76

338.15 1.1418 48.04 333.15 1.1438 56.85 

343.15 1.1386 39.58 338.15 1.1406 46.37 

348.15 1.1355 33.03 343.15 1.1375 38.34 

353.15 1.1324 27.88 348.15 1.1344 32.10 

358.15 1.1293 23.79 353.15 1.1313 27.17 

363.15 1.1262 20.51 358.15 1.1282 23.23 

- - - 363.15 1.1251 20.04 

[C4C1Im]{[NO3]0.5[CH3SO3]0.5} [C4C1Im]{[NO3]0.6[CH3SO3]0.4} 

328.15 1.1454 66.57 318.15 1.1505 103.0 

333.15 1.1422 53.70 323.15 1.1473 80.70 

338.15 1.1391 43.99 328.15 1.1441 64.37 

343.15 1.1360 36.52 333.15 1.1410 52.18 

348.15 1.1329 30.69 338.15 1.1379 42.90 

353.15 1.1298 26.08 343.15 1.1348 35.74 

358.15 1.1268 22.38 348.15 1.1317 30.13 

363.15 1.1237 19.36 353.15 1.1286 25.68 

- - - 358.15 1.1256 22.09 

- - - 363.15 1.1225 19.18 

[C4C1Im]{[NO3]0.7[CH3SO3]0.3} [C4C1Im]{[NO3]0.8[CH3SO3]0.2} 

318.15 1.1485 97.85 313.15 1.1493 113.6 

323.15 1.1454 77.05 318.15 1.1462 88.38 

328.15 1.1422 61.72 323.15 1.1430 70.03 

333.15 1.1391 50.22 328.15 1.1399 56.42 

338.15 1.1360 41.44 333.15 1.1368 46.14 

343.15 1.1329 34.63 338.15 1.1337 38.25 

348.15 1.1299 29.28 343.15 1.1306 32.11 

353.15 1.1268 25.02 348.15 1.1276 27.25 

358.15 1.1238 21.57 353.15 1.1245 23.36 



 

363.15 1.1207 18.76 358.15 1.1215 20.21 

- - - 363.15 1.1185 17.63 

[C4C1Im]{[NO3]0.9[CH3SO3]0.1}

303.15 1.1543 180.1 338.15 1.1323 35.99 

308.15 1.1511 135.4 343.15 1.1293 30.32 

313.15 1.1479 104.0 348.15 1.1262 25.81 

318.15 1.1447 81.49 353.15 1.1232 22.20 

323.15 1.1416 64.96 358.15 1.1202 19.26 

328.15 1.1385 52.61 363.15 1.1172 16.86 

333.15 1.1354 43.23    
a Standard uncertainties: u (T) = 0.02 K, u (P) = 1 kPa, u (x) = 0.004 in molar fraction, ur () = 0.001 and ur (η) = 
0.02. 
 
  



 

Table 7. Density, , and Viscosity, , of [C4C1Im]{[NO3](x)Cl(1-x)} Mixturesa. Experimental Measurements 
Performed at an Average Atmospheric Pressure of 102 kPa 

T / K  / gcm-3  / mPas T / K  / gcm-3  / mPas 

[C4C1Im]{[NO3]0.1Cl0.9} [C4C1Im]{[NO3]0.2Cl0.8} 

333.15 1.0703 378.4 318.15 - 721.3 

338.15 1.0675 271.8 323.15 - 495.6 

343.15 1.0648 199.9 328.15 1.0802 349.9 

348.15 1.0621 150.1 333.15 1.0773 253.4 

353.15 1.0593 115.0 338.15 1.0744 187.6 

358.15 1.0566 89.62 343.15 1.0716 141.9 

363.15 1.0538 71.03 348.15 1.0688 109.3 

- - - 353.15 1.0659 85.68 

- - - 358.15 1.0631 68.25 

- - - 363.15 1.0604 55.17 

[C4C1Im]{[NO3]0.4Cl0.6} [C4C1Im]{[NO3]0.5Cl0.5} 

 323.15 1.0979 259.8 313.15 1.1096 365.1 

328.15 1.0950 191.3 318.15 1.1066 262.7 

333.15 1.0920 144.0 323.15 1.1037 193.7 

338.15 1.0891 110.6 328.15 1.1008 145.9 

343.15 1.0862 86.47 333.15 1.0979 112.0 

348.15 1.0833 68.73 338.15 1.0950 87.65 

353.15 1.0805 55.46 343.15 1.0921 69.70 

358.15 1.0776 45.37 348.15 1.0892 56.25 

363.15 1.0748 37.60 353.15 1.0864 46.03 

   358.15 1.0835 38.16 

   363.15 1.0806 32.02 

[C4C1Im]{[NO3]0.6Cl0.4} [C4C1Im]{[NO3]0.8Cl0.2} 

313.15 1.1169 275.4 298.15 1.1399 373.6 

318.15 1.1139 201.5 303.15 1.1368 266.4 

323.15 1.1109 150.8 308.15 1.1337 194.9 

328.15 1.1079 115.2 313.15 1.1306 146.0 

333.15 1.1049 89.66 318.15 1.1276 111.7 

338.15 1.1019 71.02 323.15 1.1246 87.10 

343.15 1.0990 57.14 328.15 1.1216 69.09 

348.15 1.0961 46.63 333.15 1.1186 55.68 

353.15 1.0932 38.55 338.15 1.1157 45.53 

358.15 1.0903 32.27 343.15 1.1127 37.72 



 

363.15 1.0874 27.32 348.15 1.1097 31.62 

- - - 353.15 1.1068 26.81 

- - - 358.15 1.1038 22.96 

- - - 363.15 1.1009 19.87 
a Standard uncertainties: u (T) = 0.02 K, u (P) = 1 kPa, u (x) = 0.004 in molar fraction, ur () = 0.001 and ur (η) = 
0.02. 

 

  



 

Table 8. Density, , and Viscosity, , of [C4C1Im]{[CH3SO3](x)Cl(1-x)} Mixturesa. Experimental Measurements 
Performed at an Average Atmospheric Pressure of 102 kPa 

T / K  / gcm-3  / mPas T / K  / gcm-3  / mPas 

[C4C1Im]{[CH3SO3]0.1Cl0.9} [C4C1Im]{[CH3SO3]0.2Cl0.8} 

328.15 1.0767 490.5 328.15 1.0861 428.3 

333.15 1.0740 346.3 333.15 1.0834 304.6 

338.15 1.0714 250.7 338.15 1.0807 222.0 

343.15 1.0687 185.6 343.15 1.0780 165.4 

348.15 1.0661 140.3 348.15 1.0754 125.8 

353.15 1.0635 108.1 353.15 1.0728 97.50 

358.15 1.0609 84.67 358.15 1.0701 76.85 

363.15 1.0582 67.42 363.15 1.0673 61.54 

[C4C1Im]{[CH3SO3]0.3Cl0.7} [C4C1Im]{[CH3SO3]0.4Cl0.6} 

323.15 1.0989 388.2 323.15 1.1063 365.5 

328.15 1.0961 278.2 328.15 1.1034 261.8 

333.15 1.0933 204.2 333.15 1.1006 192.2 

338.15 1.0906 153.2 338.15 1.0979 144.3 

343.15 1.0879 117.2 343.15 1.0952 110.5 

348.15 1.0852 91.36 348.15 1.0925 86.21 

 353.15 1.0825 72.39 353.15 1.0897 68.40 

358.15 1.0798 58.23 358.15 1.0869 55.11 

363.15 1.0770 47.51 363.15 1.0841 45.04 

[C4C1Im]{[CH3SO3]0.5Cl0.5} [C4C1Im]{[CH3SO3]0.6Cl0.4} 

323.15 1.1166 267.1 333.15 1.1191 128.0 

328.15 1.1137 195.6 338.15 1.1163 98.76 

333.15 1.1109 146.5 343.15 1.1135 77.62 

338.15 1.1081 112.1 348.15 1.1107 62.01 

343.15 1.1053 87.31 353.15 1.1079 50.28 

348.15 1.1026 69.19 358.15 1.1050 41.33 

353.15 1.0998 55.70 363.15 1.1021 34.41 

358.15 1.0970 45.47 - - - 

363.15 1.0941 37.62 - - - 

[C4C1Im]{[CH3SO3]0.7Cl0.3} [C4C1Im]{[CH3SO3]0.8Cl0.2} 

338.15 1.1243 82.97 343.15 1.1297 56.84 

343.15 1.1215 65.89 348.15 1.1268 46.31 

348.15 1.1186 53.15 353.15 1.1239 38.24 

353.15 1.1157 43.48 358.15 1.1209 31.96 

358.15 1.1128 36.03 363.15 1.1179 27.02 



 

363.15 1.1099 30.22 - - - 

[C4C1Im]{[CH3SO3]0.9Cl0.1}

348.15 1.1344 39.65 358.15 1.1284 27.85 

353.15 1.1314 33.04 363.15 1.1253 23.72 
a Standard uncertainties: u (T) = 0.02 K, u (P) = 1 kPa, u (x) = 0.004 in molar fraction ur () = 0.001 and ur (η) = 
0.02. 
 

 

Figure 4. Density and fitted curves for the [C4C1Im]{[NO3](x)[CH3SO3](1-x)} mixtures. Symbols 

and lines represent experimental points and fitting equations [(1) and (3)], respectively. 
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Figure 5. Density and fitted curves for the [C4C1Im]{[NO3](x)Cl(1-x)} mixtures. Symbols and lines 

represent experimental points and fitting equations [(1) and (3)], respectively. 
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Figure 6. Density and fitted curves for the [C4C1Im]{[CH3SO3](x)Cl(1-x)} mixtures. Symbols and 

lines represent experimental points and fitting equations [(1) and (3)], respectively. 
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Figure 7. Viscosity and fitted curves as a function of temperature for the 
[C4C1Im]{[NO3](x)[CH3SO3](1-x)} mixtures. Symbols and lines represent experimental points and 
fitting equations [(1) and (3)], respectively. 
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Figure 8. Viscosity and fitted curves as a function of temperature for the [C4C1Im]{[NO3](x)Cl(1-

x)} mixture. Symbols and lines represent experimental points and fitting equations [(1) and (3)], 
respectively. 
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Figure 9. Viscosity and fitted curves as a function of temperature for the 
[C4C1Im]{[CH3SO3](x)Cl(1-x)} mixture. Symbols and lines represent experimental points and fitting 
equations [(1) and (3)], respectively.  
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Viscosity is a transport property with high relevance in several chemical and industrial 

procedures, mainly those dependent on pumping, mixing, stirring and mass transfer operations.2,47-

49 The temperature dependence of this property was performed between 298.15 and 363.15 K and 

an Arrhenius-type of fitting for viscosity was performed using the Vogel-Fulcher-Tammann (VFT) 

equation:  

ln η = ln 𝜂଴ + 
஻

்ି బ்
                 (3) 

where 𝜂଴, B, and T0 are constants. The fitting parameters are summarized in Table S3 of the SI 

together with the standard deviations which were calculated using equation 2. A comparison 

between the ideal glass transition, T0, calculated from the VFT equation, and the experimental 

glass transition of pure ILs determined by the DSC experiments is shown in Table 2. 

On the other hand, the viscosity of the supercooled liquid [C4C1Im][CH3SO3] at T = 323 K can 

be estimated using our previous work.34 This viscosity of the supercooled liquid should be 

approximately 100 mPa.s. In excellent agreement, the extrapolation of our experimental data down 

to T = 323 K gives a value of  = 109 mPaꞏs. 

Furthermore, the isobaric thermal expansion coefficient, αp, was also determined for both the 

pure ILs and their binary mixtures using the following equation:  

αp (K-1) = -[∂ ln / ∂ T (K)]p                   (4) 

This coefficient is defined as the temperature derivative of ln () and their values are illustrated 

in Figure 10 and listed in Table S7 corresponding to the symmetrical of the A1 parameter of 

equation 1. The estimated uncertainty of the αp values is 0.05 K-1 (ur(αp) = 0.05). The comparison 

between the estimation of the αp value for [C4C1Im][CH3SO3] (5.4 (ur(αp) = 0.05ꞏ10-4)), obtained 

in a previous work34 and the value calculated herein shows an excellent agreement. 



 

 

Figure 10. Isobaric thermal expansion coefficients, αp, for the binary systems studied in this work.
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[C4C1Im]{[NO3]0.4[CH3SO3]0.6} 

[C4C1Im]{[NO3]0.5[CH3SO3]0.5} 

[C4C1Im]{[NO3]0.6[CH3SO3]0.4} 

[C4C1Im]{[NO3]0.7[CH3SO3]0.3} 

[C4C1Im]{[NO3]0.8[CH3SO3]0.2} 

[C4C1Im]{[NO3]0.9[CH3SO3]0.1} 

[C4C1Im][NO3]



 

Based on the well-demonstrated50-52 notion that the simple sum of the effective molar volumes 

occupied by the cation and anion precisely determines the IL molar volume, Table 9 displays the 

calculated effective cation molar volume (Vc*) and the anions’ ones (Va*) available in literature 

and the corresponding estimated molar volume for the pure ILs, Vm*, using the following equation:  

Vm* (IL) = Vc* + Va*               (5) 

Those estimated molar volumes, Vm*, were compared with the extrapolated molar volumes, 

Vm
ext, obtained in this work and are shown in Table 9, using the estimated densities obtained from 

the experimental data for the three supercooled ILs at the standard temperature of T = 298.15 K 

(and p = 0.1 mPa). This comparison demonstrates an excellent agreement between estimated Vm* 

and extrapolated Vm
ext (better than 0.15% (0.0015)). 

For the three binary mixtures studied in this work, the excess molar volumes (VE) were 

calculated based on the differences achieved between the molar volume of the final mixture and 

the molar volume of the hypothetical ideal mixture, as follows: 

VE = Vmix - (V1x1 + V2x2)                (6) 

where Vmix is the molar volume of the mixture, V1 and V2 are the molar volume of the two pure 

ILs, while x1 and x2 are the corresponding molar fractions. The excess molar volumes versus the 

molar fraction compositions for all binary mixtures at T = 363.15 K are shown in Table S8 of SI, 

and the system composed of [C4C1Im]{[NO3](x)Cl (1-x)} is represented in Figure 11. For this binary 

mixture, the excess molar volumes are positive and the deviations greater than the ones observed 

for the other mixtures. This behavior indicates that the interactions between the two pure 

compounds are weaker than the intrinsic interactions of each pure IL. An opposite behavior was 



 

achieved for the other studied mixtures with negative excess molar volumes. The typical 

magnitude of the excess molar volumes of ILs binary mixtures is very modest – circa 0.1% of the 

overall molar volume. These very small deviations of the mixtures’ molar volumes from ideality 

were already noticed for several mixtures based on an imidazolium-based cation independently of 

the nature of the anion, in both experimental and theoretical studies.23,26,53  

  



 

Table 9. Estimated Molar Volumes and Densities of the Supercooled ILs at T = 298.15 K (and p = 0.1 mPa). 
Mw is the Molar Mass 

 
Mw 

(gꞏmol-

1) 

 ext 
(gꞏcm-3) 

Vm
ext 

(cm3ꞏmol-1) 
Vc* 

(cm3ꞏmol-1) 
Va* 

(cm3ꞏmol-1) 
Vm

* 

(cm3ꞏmol-1)

[C4C1Im][NO3] 201.22 1.1548 174.24 133.5851 39.1051 172.68 

[C4C1Im][CH3SO3] 234.32 1.1715 200.02 133.5851 66.6234 200.20 

[C4C1Im]Cl 174.67 1.0828 161.32 133.5851 25.9051 159.48 

 

  



 

 

Figure 11. Excess molar volume, VE, for the [C4C1Im]{[NO3](x)Cl(1-x)} mixture at T = 363.15 K. 
The solid line is just a guide to the eye. 
  

[C4C1Im]{[NO3]xCl(1-x)}

0.00 0.25 0.50 0.75 1.00

V
E
 / 

cm
3 ꞏm

ol
-1

0.00

0.05

0.10

0.15

0.20

0.25



 

Assuming an ideal viscosity behavior, the difference between the experimental mixture 

viscosity and the estimated viscosity of the pure compounds must be null. The viscosity deviations 

from linearity were calculated at T = 363.15 K from the experimental data applying the following 

equation: 

Δ ln η = ln η – (x1) ln η(x1) – (1-x1) ln η(1- x1)              (7) 

                 

where η, η(x1), and η(1- x1) are the dynamic viscosity of the mixture, the chemical compound (1) at molar 

fraction (x1) and the other chemical compound (2) at molar fraction (1-x1), respectively. The obtained 

results for all the studied binary mixtures are depicted in Table S9 of SI and plotted in Figure 12 

for the [C4C1Im]{[NO3](x)Cl(1-x)} mixture. The viscosity deviations to linearity are negative for 

both [C4C1Im]{[NO3](x)Cl(1-x)} and [C4C1Im]{[CH3SO3](x)Cl(1-x)} mixtures. An opposite behavior 

is observed for the [C4C1Im]{[NO3](x)[CH3SO3](1-x)} mixture where positive deviations were 

obtained. 

  



 

 

 

Figure 12. Viscosity deviations to linearity, Δln (η / mPaꞏs), for the [C4C1Im]{[NO3](x)Cl(1-x)} 
mixture at T = 363.15 K. The solid line is just a guide to the eye. 
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4. CONCLUSIONS 

This work provides experimentally difficult measurements regarding the properties and the 

phase behavior of several ILs binary mixtures composed of 1-butyl-3-methylimidazolium and 

three distinct anions. Most of the work was done at either moderate or high temperatures. Their 

characterization has included thermal, dynamic and volumetric properties. The three binary 

mixtures studied in this work revealed quite different solid-liquid equilibria behavior. The systems 

composed of [C4C1Im]{[NO3](x)Cl(1-x)} and [C4C1Im]{[CH3SO3](x)Cl(1-x)} exhibited a usual 

eutectic behavior with an ideal or quasi-ideal solubility of the compounds in the solid phase, and 

a eutectic point close to room temperature. In contrast, a continuous solid solution was observed 

in a broad temperature range for the system constituted of [C4C1Im]{[NO3](x)[CH3SO3](1-x)}, with 

a drop on the melting point associated to the addition of [C4C1Im][NO3]. This behavior is 

associated with a complete miscibility of the binary mixture in the solid phase. Based on the 

melting and glass temperatures determined for all pure compounds and their binary mixtures, it 

can be assumed that when these solutions fail to crystallize on cooling, they become a brittle glass 

at 2/3 of its melting temperature, as estimated by the empirical 2/3 golden rule. 

The ideal behavior of these binary mixtures was analyzed based on the excess molar volume 

and viscosity deviations to linearity. These results demonstrated that the excess molar volumes are 

positive for [C4C1Im]{[NO3](x)Cl(1-x)}. This behavior suggests weaker attractive interactions in the 

mixtures as compared to the intrinsic interactions of each pure IL. A distinct behavior was observed 

for the other studied mixtures. Regarding the viscosity deviations to linearity for 

[C4C1Im]{[NO3](x)Cl(1-x)} and [C4C1Im]{[CH3SO3](x)Cl(1-x)}, higher viscosities were observed for 

the pure compounds than for the mixtures.  



 

The opposite behavior was seen for the [C4C1Im]{[NO3](x)[CH3SO3](1-x)} mixtures, where 

positive deviations were obtained. 

To sum up, the three studied systems showed different behaviors but all very close to an ideal 

mixture, with small excess properties. 
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