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ABSTRACT: Hydrophobic interactions are one of the main
thermodynamic driving forces in self-assembly, folding, and
association processes. To understand the dehydration-driven
solvent exposure of hydrophobic surfaces, the micellization of
functionalized decyldimethylammonium chlorides,
XC10Me2N

+Cl−, with a polar functional group, X = C2OH,
C2OMe, C2OC2OMe, C2OOEt, together with the “reference”
compound decyltrimethylammonium chloride, C10Me3N

+Cl−,
was investigated in aqueous solution by density measure-
ments, isothermal titration calorimetry (ITC), and dielectric
relaxation spectroscopy (DRS). From the density data, the
apparent molar volumes of monomers and micelles were
estimated, whereas the ITC data were analyzed with the help
of a model equation, yielding the thermodynamic parameters and aggregation number. From the DRS spectra, effective
hydration numbers of the free monomers and micelles were deduced. The comprehensive analysis of the obtained results shows
that the thermodynamics of micellization are strongly affected by the nature of the functional group. Surprisingly, the hydration
of micelles formed by surfactant cations with a single alkyl chain on quaternary ammonium is approximately the same,
regardless of the alkyl chain length or functionalization of the headgroup. However, notable differences were found for the free
monomers where increasing polarity lowers the effective hydration number.

■ INTRODUCTION

Hydrophobic and hydrophilic interactions are competing
effects influencing the kinetics and dynamics of many processes
in chemistry, biochemistry, and physics. The micellization of
surfactants is regarded as a useful model process for their
investigation. To understand these effects on a molecular level,
recent studies attempted to explore the complete atomistic
structure of a micelle and its surroundings in solution.1−3 It
was found that the hydrophobic core of a micelle is surrounded
by a highly corrugated surface containing hydrated nonpolar
cavities, whose depth increases with increasing surfactant chain
length.2 Additionally, the hydration behavior of the counter-
ions has drastic effects on micelle size and shape.3

The aforementioned studies were carried out using
quaternary ammonium salts with a long alkyl chain. This
class of cationic surfactants is probably the most studied model
for investigating the effects of alkyl chain length and
counterions on micellar properties.4−12 However, little is
known about quaternary ammonium salts carrying a functional
group in addition to the long alkyl chain on the quaternary
ammonium. Such substitution should significantly affect
headgroup hydration and counterion binding and thus allow

the tuning of micelle properties. Examples for such compounds
were synthesized by Swain et al.13 who prepared various
alkyldimethylammonium bromides and iodides with the fourth
group being an alkyl chain spacer terminated by a carboxylate,
ester, amide, or nitrile group. These authors found that the
melting points of almost all of these compounds were below
200 °C, making their cations interesting as potential candidates
for the preparation of surface-active ionic liquids (SAILs).14

It is well-known that the longer the alkyl chains of
quaternary ammonium salts, the more toxic they are to living
organisms,15 making many of these compounds useful in
antibacterial or antifungal applications. However, there is a lack
of systematic studies on systems containing 8−10 carbon
atoms in the alkyl chain even for simple alkyltrimethylammo-
nium halides. The exceptions are choline-based quaternary
ammonium salts that have been recently studied16,17 and
where Silva et al. determined the toxicity of mono- and
dicationic cholinium-based ionic liquids.18
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Thus, the aim of this present study was the synthesis and the
characterization of selected XRMe2N

+Cl− compounds with a
decyl moiety, R, as the longest alkyl chain and an alcohol,
ether, or ester group as a polar residue, X (Scheme 1). Because
of the decyl alkyl chain, these compounds could be regarded as
possible candidates for “green” and simultaneously SAILs.
However, additional studies are required to assess the toxicity
of these compounds. Additionally, the polar residues can make
these micellar systems even more similar to proteins and thus
more realistic models for the study of interactions in biological
systems.
First, the thermal properties of the pure compounds were

investigated by thermogravimetric analysis (TGA)/differential
scanning calorimetry (DSC) experiments, followed by a
thorough study of the effect of the functional group on the
properties of aqueous solutions (density) and their micelliza-
tion process in water.
Surprisingly, N-decyl-N,N,N-trimethylammonium chloride

(commonly referred to as decyltrimethylammonium chlor-
ideDeTAC) has rarely been the subject of investigations and
hence was included in this work. The influence of the
functional groups on the micellization behavior of function-
alized decyldimethylammonium chlorides, XC10Me2N

+Cl−,
(Scheme 1) in aqueous solutions was studied by isothermal
titration calorimetry (ITC), one of the most powerful
techniques for the thermodynamic characterization of
aggregation processes.
ITC experiments were carried out in the temperature (T)

range between 278.15 K and 328.15 K. The obtained
experimental data were analyzed by an improved mass action
model, considering micellization as a two-step process.19 In
order to eliminate all the empirical constants appearing in the
usually applied models,20,21 the state of the solutions in the
syringe and in the titration cell was properly taken into
account. By fitting the model equation to the experimental
data, the corresponding standard thermodynamic parameters
of micellization for both steps (enthalpy of micellization,
ΔM,1H

⊖, ΔM,2H
⊖; Gibbs free energy of micellization, ΔM,1G

⊖,
ΔM,2G

⊖; entropy of micellization, ΔM,1S
⊖, ΔM,2S

⊖; and heat
capacity change upon micellization, ΔM,1cp

⊖, ΔM,2cp
⊖) were

obtained. These results were discussed in terms of micelle size
and changes in the hydration of the alkyl chains and the polar
heads of the differently functionalized systems.
To get more insights into the hydration properties, effective

hydration numbers were determined at 298.15 K by dielectric

relaxation spectroscopy (DRS) in the frequency range 0.01 ≤
ν/GHz ≤ 89.

■ EXPERIMENTAL SECTION
Materials. Commercially available reagents and solvents were used

as received from Sigma-Aldrich unless otherwise specified. Doubly
distilled deionized water was obtained from a Millipore Milli-Q water
purification system (Millipore, USA). 1H NMR spectra were recorded
on Bruker 300 or 400 or 500 MHz NMR spectrometers and are
available in Figures S1−S7 in the Supporting Information.

Synthetic Procedures. C10Me3N
+Cl− and (C2OH)C10Me2N

+Cl−

were synthesized by the alkylation of the corresponding tertiary amine
with chlorodecane. For the synthesis of the compounds with C2OMe,
C2OC2OMe, and C2OOEt functional groups, first, N-decyl-N,N-
dimethylamine (C10Me2N) was prepared by alkylation of dimethyl-
amine with bromodecane, followed by its reaction with the
appropriate functionalized chloro-substituted compound. The de-
tailed procedures are described in the Supporting Information.

Thermal Analysis. TG measurements were performed on a
Mettler Toledo TGA/DSC 1 Instrument, coupled to a Pfeiffer
Vacuum ThermoStar mass spectrometer, in the temperature range
from 25 to 400 °C under dynamic air flow (100 cm3 min−1) with a
heating rate of 5 K min−1. Approximately 3 mg of sample was weighed
into a 150 μL platinum crucible, and the baseline was subtracted.
DSC measurements were performed separately on a Mettler Toledo
DSC 1 instrument in aluminum crucibles under the same conditions.

Aqueous Solution Preparation. The synthesized samples
(white solids) were stored in glass bottles. Solutions were prepared
by weight, accounting for the amount of water in the solid samples as
determined just before solution preparation by a Mettler Toledo
DL38 Karl Fischer titrator.

Density Measurements. To enable the conversion between
concentration scales and to calculate the apparent molar volumes of
the micellar solutions in the concentration range of the experiments,
the densities of all prepared solutions were measured at the 0.1 MPa
pressure in the temperature range from 278.15 to 328.15 K using a
vibrating tube densimeter, Anton Paar DMA5000, with a stated
reproducibility of ±1·10−3 kg·m−3.

Isothermal Titration Calorimetry. The heat changes associated
with (de)micellization were measured using a VP-ITC micro-
calorimeter (MicroCal Inc., San Diego, CA, USA), where 1.00 g of
distilled and degassed water was titrated with the surfactant solution
added by a 300 μL syringe. The surfactant concentrations were
approximately 10−15 times higher than their critical micellar
concentration (cmc). Successive aliquots of 2 μL of the surfactant
solution were injected at 10−15 min intervals by a motor-driven
syringe into the titration cell containing the solution (solvent) while
stirring at 300 rpm. For each system, experiments were carried out in
10 K steps between 278.15 and 328.15 K. The area under the peak
following each injection of the surfactant solution was obtained by
integration of the raw signal (example in Figure S8 in the Supporting

Scheme 1. Structures of Studied Systems with a Decyl Alkyl Chain, R, and Different Functional Groups, X, and Their
Abbreviations Used in This Paper: (a) Me, N-Decyl-N,N,N-trimethyl-ammonium Chloride; (b) C2OH, N-(2-Hydroxyethyl)-N-
decyl-N,N-dimethylammonium Chloride; (c) C2OMe, N-(2-Methoxyethyl)-N-decyl-N,N-dimethylammonium Chloride; (d)
C2OC2OMe, N-(2-(2-Methoxyethoxy)ethyl)-N-decyl-N,N-dimethylammonium Chloride; (e) C2OOEt, N-(2-Ethoxy-2-
oxoethyl)-N-decyl-N,N-dimethylammonium Chloride

Langmuir Article

DOI: 10.1021/acs.langmuir.8b03993
Langmuir 2019, 35, 3759−3772

3760

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b03993/suppl_file/la8b03993_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b03993/suppl_file/la8b03993_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b03993/suppl_file/la8b03993_si_001.pdf
http://dx.doi.org/10.1021/acs.langmuir.8b03993


Information), and it is proportional to the heat effect expressed per
mole of the added surfactant. From the known starting mass of the
water in the cell and the concentration and density of the stock
solution in the syringe, the concentration after each addition was
calculated first in moles of surfactant per kg of solution (m, applied in
the thermodynamic analysis) and then converted to molar
concentration (c, used in diagrams) by the help of the known
concentration dependence of density.
Dielectric Relaxation Spectroscopy. The spectra of relative

permittivity, ε′(ν), and dielectric loss, ε″(ν), were recorded in the
frequency range 0.01 ≤ ν/GHz ≤ 89 at (298.15 ± 0.05) K. To obtain
ε″(ν), the experimentally accessible total loss was corrected for dc
conductivity, κ, and electrode polarization as described elsewhere.22 A
waveguide interferometer23 was used for ν ≥ 60 GHz, whereas a
vector network analyzer (Agilent E8364B), in conjunction with two
open-ended coaxial dielectric probes (Agilent 85070E-20 and
85070E-50) and a home-made coaxial-line cutoff cell, covered the
remaining frequency range.24

The obtained spectra for ε′(ν) and ε″(ν) were simultaneously
fitted to various relaxation models following the criteria discussed in
detail previously.25 Those for the 0.04 M solutions of all surfactants
were best described by a sum of five Debye equations (n = 5; the 5D
model)

S
( ) ( ) i ( )

1 i2j

n
j

j1

∑ε ν ε ν ε ν ε
πντ

* = ′ − ″ = +
+∞

= (1)

whereas for solutions with c ≥ cmc, the superposition of n = 6 Debye
equations (the 6D model) produced slightly better fits and yielded
results which better represent the state of these solutions (see below).
In eq 1, ε∞ is the high-frequency permittivity associated with
intramolecular polarizability, Sj is the amplitude of mode j, and τj is
the associated relaxation time (i2 = −1). As the highest-frequency
mode (n = 5 resp. 6) peaks outside the covered frequency range, τn
and ε∞ were fixed to their pure water values, 0.278 ps and 3.52,
obtained from fitting data up to 2 THz,26 to reduce the scatter of its
amplitude, Sn.

■ RESULTS AND DISCUSSION
Thermal Stability. From the TG and DSC curves (Figure

S9 in the Supporting Information), the phase transition
temperature, melting point, and decomposition onset temper-
ature as well as enthalpies of the phase transition and melting
for all studied systems were estimated. All obtained data are
listed in Table 1. Phase transition refers to the rearrangement
of the crystal structure, while the melting point was confirmed
visually. TG traces and associated mass spectrometry
intensities for selected m/z values are compared in Figure
S10 of the Supporting Information.
From Table 1, it is evident that introducing an ester group as

a polar residue on the quaternary ammonium group
significantly lowers the melting point. With Tm < 100 °C,
C2OOEt can be regarded as a SAIL composed from a
quaternary ammonium-based cation and a relatively small

chloride anion. According to their melting points, the alcohol-,
ether-, and polyether-functionalized compounds are molten
salts with a relatively low Tm. These results demonstrate that
the appropriate functionalization with a polar residue on the
quaternary ammonium group crucially changes the thermal
properties of these systems, leading to the formation of molten
salts or even SAILs. With shorter alkyl chains, these ionic
liquids should have low toxicity and thus potentially represent
“green” SAILs.

Volumetric Properties. The densities, ρ(T, m), of the
investigated aqueous solutions, recorded at concentrations of
up to m ≈ 1.2 mol kg−1 of solution and temperatures between
278.15 and 328.15 K, are gathered in Table S1 and Figure S11
of the Supporting Information. In the concentration range
between 0 and 0.25 mol kg−1, a second-order polynomial was
fitted to ρ(m) at each temperature. The obtained parameters
are given in Table S2 and Figure S12 of the Supporting
Information together with the literature data for the density of
water, ρH2O(T).

27

According to Figure S11 and Table S1 of the Supporting
Information, the density, ρ, of aqueous C10Me3N

+Cl− solution
decreases with increasing concentration of the surfactant at all
temperatures. This was also reported for some other aqueous
solutions of cationic surfactants with the chloride counter-
ion.28,29 On the other hand, the density of bromides is
reported to increase with increasing concentration.30,31

Replacing a methyl group by a polar residue at the quaternary
ammonium headgroup leads, at low temperatures, to a
maximum in the density versus concentration plot (Figure
S11). This unusual feature diminishes with increasing temper-
ature. Thus, it appears that the unusual initial increase in ρ
could be ascribed to the formation of hydrogen bonds between
the polar residue and water, leading to more “compact”
structures and thus to an increase in density. As the
concentration of the surfactant increases and the formation
of the micelles starts, the formation of such polar residue−
water hydrogen bonds becomes difficult because of steric
constraints and therefore the density begins to decrease.
Support for our hypothesis comes from the density measure-
ments of aqueous alkali carboxylate solutions,19 where ρ is
always increasing with concentration and temperature because
of the increasing number of anion−water hydrogen bonds.
From the density data, the corresponding apparent molar

volumes, Vϕ, were calculated by

V T
M

T b T T
( )

( )
1 1

( )
1
( )H O H O2 2

i

k

jjjjjjj
y

{

zzzzzzzρ ρ ρ
= − −ϕ

(2)

where M is the molar mass and b is the surfactant molality
(moles solute per kilogram of the solvent). Figure S13 shows

Table 1. Temperatures, T, and Enthalpies, ΔH, of Phase Transition Together with the Melting Points, Tm, and Enthalpies of
Melting, ΔmH, of XC10Me2N

+Cl− Where X Represents Me, C2OH, C2OMe, C2OC2OMe, and C2OOEt Functional Groupsa

phase transition melting point

X T/°C ΔH/kJ mol−1 Tm/°C ΔmH/kJ mol−1 Tdec/°C

Me 210
C2OH 55−85 27.9 170−180 3.6 190
C2OMe 120−122 41.4 165
C2OC2OMe 93−102 7.7 118−121 28.4 165
C2OOEt 93−98 28.9 130

aThe decomposition-onset temperatures, Tdec, are also listed.
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the dependence of Vϕ on b for all studied systems at 298.15 K.
From these data, the apparent molar volume of free monomers,
Vϕ
S , was estimated by extrapolation to b = 0. From the molality

dependence of the apparent molar volume, Vϕ, it is evident
that above a concentration of ∼0.5 mol kg−1, Vϕ is almost
constant. Therefore, the apparent molar volume of the
surfactant in the micelles, Vϕ

M, was obtained from the averaged
values above 0.5 mol kg−1, yielding the values summarized in
Table 2.

Thus, we conclude that for larger b values, the monomer
concentration remains essentially constant and all the added
surfactant ends up in micelles. In this region, the apparent
molar volumes of free monomers, Vϕ

S , and monomers in the
micelle, Vϕ

M, are practically independent of the surfactant
concentration.
Also included in Table 2 are the number of water molecules,

nh
0(S), which may be packed around a sphere of volume Vϕ

S/NA
(see the Supporting Information, p S16).32 This quantity can
be regarded as a rough estimate for the number of H2O
molecules, which can be accommodated in the first hydration
shell of the free surfactant cations.
Thermodynamics of Micellization. Two-Step Micelliza-

tion Model. In our previous work, a two-step micellization
model was introduced.19 Formally, micellization may be
regarded as a multistep process, involving a series of coupled
equilibria with aggregation numbers, i, ranging from two to
infinity33 and the specific thermodynamic parameters for each
of them. However, for most of these i values, the probability of
finding such an aggregate is small and thus irrelevant for
thermodynamic studies. Moreover, such a formal treatment of
micellization would be highly impractical in the analysis of
experimental data because of the excessive number of
adjustable parameters. On the other hand, when micellization
is less favorable, that is, the cmcs are large and predominantly
aggregates with less than 20 monomers are formed, the usually
assumed approximation describing micellization with one
single equilibrium (the closed-association model34) fails to fit
data well over a wide temperature range and at higher
concentrations. This observation can be ascribed to the fact
that the most probable aggregation number depends on the
concentration and temperature. For the present systems, the
simpler one-step model did not yield reasonable fits to the
experimental ITC data, whereas this was achieved with the
two-step model. However, it should be noted that the
proposed two formation steps of this model cannot be
considered as strictly separated processes with two well-

defined populations of micelles having aggregation numbers n1
and n2, respectively. Instead, these characteristic numbers
represent the range of micelle sizes in the given concentration
and temperature ranges. A more detailed explanation can be
found in our previous work;19 see also the Thermodynamic
Parameters of Micellization and Aggregation Number section.
The two-step micellization model for the cationic surfactant

can be represented with equilibria

n nC A C A
K

n n
n

1 1
(1 )M,1

1 1
1β+ β

β+ − − +X Yoooo (3)

n nC A C A
K

n n
n

2 2
(1 )M,2

2 2
2β+ β

β+ − − +X Yoooo (4)

where C+ represents the free monomers of surfactant, A−

stands for the corresponding free counterions, and
Cn1Aβn1

(1−β)n1+ and Cn2Aβn2
(1−β)n2+ stand for the micelles (M,1

and M,2) with aggregation numbers n1 and n2. The degree of
counterion binding, β, is taken to be the same for M,1 and M,2.
The equilibria between the involved species can be expressed
by apparent equilibrium constants, KM,1 and KM,2,

K
x

x x
K

x

x x
;n n n nM,1

M,1

C A
M,2

M,2

C A
1 1 2 2

= =β β
(5)

where activities are approximated to be equal to the molar
fractions, xi, of the involved species. The values for KM,1 and
KM,2 are obtained from the corresponding standard Gibbs free
energies of micellization, ΔM,1G

⊖ and ΔM,2G
⊖,

G
RT
n

K G
RT
n

Kln ; lnM,1
1

M,1 M,2
2

M,2Δ = − Δ = −⊖ ⊖

(6)

and determine the composition of each solution at a given total
concentration of surfactant, c. For a detailed explanation, see
the Supporting Information, p S19.
The enthalpy of solution can be written as

H n H n H n n H n n H
RT B b n RT n B b

n n B b n
2 (1 (1 ) )

(1 (1 ) )

sol sol S CA 1 M,1 M,1 2 M,2 M,2
2

CA C C
2

1 MA,1 M,1

M,1 2 MA,2 M,2 M,2

β
β

= ̅ + ̅ + Δ + Δ
+ ′ + [ + − ′

+ + − ′ ]

⊖ ⊖ ⊖

(7)

where ΔM,1H
⊖ and ΔM,2H

⊖ are enthalpies of micellization.
Equation 7 is applicable to any calorimetric experimental
method. The second part of the equation introduces a nonideal
contribution, typical for solutions of ions (coefficients BCA′ ,
BMA,1′ , and BMA,2′ ). Detailed derivation of the equation with a
corresponding explanation for all of the symbols may be seen
in the Supporting Information, p S20.
In ITC experiments, the measured heat changes

H
q

n
H H H

nS,stock

0 stock

S,stock
Δ = =

− −

(8)

are the result of three contributions, namely, the enthalpy of
the stock solution, Hstock, as well as the enthalpies of the
solution in the cell before, H0, and after addition, H, divided by
the total amount of the surfactant added, nS,stock.
By combining eqs 7 and 8, the final form of the model

equation is given as

Table 2. Apparent Molar Volumes of the Free Monomers,
Vϕ
S , and of the Surfactant in the Micelle, Vϕ

M, Together with
the Number of Water Molecules, Which May Be Packed
around a Sphere of Volume Vϕ

S /NA, nh
0(S) for Aqueous

Solutions of XC10Me2N
+Cl− at 298.15 K; X Represents the

Functional Groups Me, C2OH, C2OMe, C2OC2OMe, and
C2OOEta

X Vϕ
Sb Vϕ

Mb nh
0(S)

Me 247.8 249.7 41.7
C2OH 263.6 270.1 42.9
C2OMe 285.1 289.0 44.5
C2OC2OMe 321.2 328.7 47.2
C2OOEt 302.4 309.9 45.8

aUnits: Vϕ
S and Vϕ

M in cm3 mol−1. bUncertainty: ±2.
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where ΔnM,1/Δn and ΔnM,2/Δn are the changes in the amount
of micelles upon addition. A detailed derivation with
explanation of the symbols and indexes is given in the
Supporting Information, p S21. The enthalpy change in eq 9
depends upon the amounts of micelles and free surfactant
before and after the addition of the stock solution, their
amounts in the stock solution itself, and the mass of solvent in
all three solutions. A detailed derivation of the global fitting
procedure of the model equation to the corresponding
experimental curves at all the examined temperatures by
considering the temperature dependence of the parameters is
also shown in the Supporting Information, p S22. The value of
the cmc for each of the investigated systems at a given
temperature was estimated numerically from the inflection
point of the line representing the dependence of ΔnM,2/Δn on
concentration.
Isothermal Titration Calorimetry. The dependence of the

experimental heat of dilution, ΔH, on surfactant concentration
(enthalpogram) for the titration of (C2OOEt)C10Me2N

+Cl− in
water in the investigated temperature range is shown in Figure
1a. For all other studied systems, see Figure S14 of the
Supporting Information. Figure 1b shows the comparison of
the enthalpograms of all the investigated surfactants at 298.15
K.
For evaluating the experimental ITC data, the two-step

micellization model,19 eq 9, was applied. All parameters
obtained by the fitting procedure are listed in Tables S3 and S4
in the Supporting Information. Figure 2 presents the
corresponding thermodynamic parameters of micellization
(ΔM,1H

⊖, ΔM,2H
⊖, ΔM,1G

⊖, ΔM,2G
⊖, TΔM,1S

⊖, TΔM,2S
⊖) at

298.15 K.
Thermodynamic Parameters of Micellization and Ag-

gregation Number. For all investigated systems at 298.15 K,
the micellization process is endothermic for both steps and
accompanied by a considerable increase in entropy, ΔM,1S

⊖

and ΔM,2S
⊖, so that the standard Gibbs free energies, ΔM,1G

⊖

and ΔM,2G
⊖, are negative (Figure 2 and Table S3). For both

steps, the standard enthalpies of micellization, ΔM,1H
⊖ and

ΔM,2H
⊖, decrease with temperature (Table S3). This is in line

with previous thermodynamic studies of micellization, which
revealed that this is an endothermic process at low temper-
atures but becomes exothermic at high temperatures.7,11,12,20,21

Usually, for cationic surfactants, the temperature where ΔMH
⊖

= 0 is close to room temperature (298 ± 5 K) but may depend
on the counterion.35 A similar behavior was also found for
alkali decyl- and alkali dodecylsulfates,36 whereas for
carboxylates, the temperature where ΔMH

⊖ = 0 is distinctly
shifted toward higher values (∼320 K).19,37 For the present
surfactants, this temperature was found to be ∼320 K for
ΔM,1H

⊖ and ∼310 K for ΔM,2H
⊖, as can be seen from Table

S3.
As already mentioned before, the aggregation numbers n1

and n2 of the applied two-step micellization model should only
be regarded as characteristic numbers, which best represent the
range of micelle sizes at the given concentration and
temperature with smaller micelles (n ≈ n1) dominating at
low c and larger entities (n ≈ n2) at high c and low T. In this
formal treatment, each step has its defined Gibbs free energy,
ΔM,1G

⊖ and ΔM,2G
⊖, and with eq 5, the apparent amount of

micelles, nM,1 and nM,2, with sizes n1 and n2 can be calculated,
yielding the average aggregation number, navg, as

n
n n n n

n navg
1 M,1 2 M,2

M,1 M,2
=

+
+ (10)

Figure 1. Enthalpograms for (a) (C2OOEt)C10Me2N
+Cl− in water at studied temperatures, T and (b) XC10Me2N

+Cl− at 298.15 K where X
represents Me, C2OH, C2OMe, C2OC2OMe, and C2OOEt functional groups. Solid lines represent the fits with the two-step model, eq 9.

Figure 2. Thermodynamic parameters of micellization for the
investigated systems in water at 298.15 K: standard enthalpies,
ΔM,1H

⊖, ΔM,2H
⊖, Gibbs free energies, ΔM,1G

⊖, ΔM,2G
⊖, and entropy

contributions, TΔM,1S
⊖, TΔM,2S

⊖, as obtained by the fitting
procedure of the two-step model. Subscripts 1 and 2 refer to the
first and second step of the model, according to eqs 3 and 4.
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Furthermore, from the thus accessible molar concentrations
of the two micelle “species”, cM,1 and cM,2, and the analytical
surfactant concentration, c, the fraction of surfactant ions
bound in micelles, α,

n c n c

c
c
c

11 M,1 2 M,2 Cα =
+

= −
(11)

is obtained; cC is the molar concentration of free surfactant
cations.
The resulting concentration and temperature dependences

of α and navg are presented in Figure 3 for (C2OOEt)-

C10Me2N
+Cl− and in Figure S15 for all investigated systems. At

concentrations significantly below cmc, α is negligible; thus,
the calculated value of navg is irrelevant, but above this
threshold, the fraction of surfactant ions bound in micelles
rapidly rises, reaching values close to unity at ∼1 mol L−1.
Figures 5 and S19 reveal that around cmc, micelle formation
sets in with navg = n1. With increasing c, the average aggregation
numbers first rapidly increase, but from c ≈ 2 cmc onward, the
slope considerably reduces so that navg only slowly approaches
the plateau value, which is dependent on temperature and
reaches n2 at the lowest studied temperature. This trend
becomes more obvious with increasing temperature so that at a
given c the average micelle size decreases with increasing T. To
the best of our knowledge, no literature data are available for
the substituted surfactants. However, the present value of n2 =
24 ± 2 for C10Me3N

+Cl− is in excellent agreement with the
aggregation number of nagg = 26 ± 3 obtained by fluorescence
quenching “at surfactant concentrations well above the cmc”.38

This lends credit to the other n2 values obtained in this
investigation. Unfortunately, there are no other experimental
methods that can precisely determine aggregation numbers at
low surfactant concentrations. Furthermore, the temperature

dependence of navg (at high concentrations) is in the range of
experimental errors of all known methods; thus, it is currently
not possible to confirm the obtained temperature dependence
by independent experiments.
Interestingly, n1 has approximately the same value for all

functional groups (n1 = 9 ± 2), including the unsubstituted
C10Me3N

+Cl− (Figure 4a and Table S4). This suggests that at

the cmc, the polar heads are so far apart that formation of these
smaller micelles is not affected by the substituents. On the
other hand, compared to the methyl group, n2 is decreased for
all functional groups. Thus, polar substituents at the headgroup
decrease the number of molecules assembled in the micelle at
high surfactant concentration, although steric effects cannot be
the only reason for that, as the C2OH moiety yields the
smallest n2 value (14 ± 1.5).
For both steps of the two-step model, the main driving force

for micelle formation is the apparent disaffinity of water and
the nonpolar (interacting) surfaces, known as the hydrophobic
effect.39 The parameters illustrating this are the large positive
entropies of micellization, ΔM,1S

⊖ and ΔM,2S
⊖ (Table S3), as

well as the heat capacities of micellization, ΔM,1cp
⊖ and ΔM,2cp

⊖,
which are strongly negative for both steps (Figure 4b and
Table S4). These entropy and heat capacity changes can be
ascribed to the dehydration of the nonpolar surfactant tails
upon micelle formation. In fact, for all studied systems, the plot
of ΔM,2S

⊖(298.15 K) versus ΔM,2cp
⊖ reveals a nearly linear

dependence.
By modeling the micellization processes as a transfer of

surfactant molecules into the micellar phase, the water
accessible surface area (WASA) may be relevant for the
estimation of the extent of dehydration of the nonpolar alkyl

Figure 3. Concentration dependence of the (a) fraction of surfactant
ions bound in micelles, α, and (b) average aggregation number, navg,
for (C2OOEt)C10Me2N

+Cl− at the investigated temperatures as
estimated from eqs 11 and 10.

Figure 4. (a) Aggregation numbers, n1 and n2, and (b) heat capacities
of micellization, ΔM,1cp

⊖ and ΔM,2cp
⊖, for both steps for the investigated

systems.
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chains upon micellization. The heat capacity can be expressed
in terms of the change of water accessible nonpolar and polar
surface areas, derived from protein folding40

c a A b AM p np pΔ = ·Δ + ·Δ⊖
(12)

where ΔAp stands for the loss of water accessible polar and
ΔAnp for nonpolar surface area upon protein folding. For
surfactants, it is usually assumed that the polar surface remains
in contact with the water after micellization (ΔAp = 0).7,35,37

According to Richards,41−43 the WASA of a methylene group is
30 and 88 Å2 for a methyl group. Thus, for the hydrophobic
tails of all investigated C10 surfactants, ΔAnp should be very
similar, ∼358 Å2. In the literature, a variety of values for a and
b coefficients may be found,40,44 but in many applications for
proteins,44 they give very similar results. Assuming a = (−1.34
± 0.33) J·mol−1·K−1·Å−2 for this coefficient45 in eq 12, the
value of ΔMcp

⊖(thnp) = (−479 ± 118) J·mol−1·K−1 is obtained.
This approach turned out to be successful for describing
nonionic surfactants.46,47 For ionic surfactants, the approach
served as estimation of the extent of the removed hydrophobic
tail contact with water.19,20,35,48 It turned out that counter-
ions35 and the cation structure48 are also important.
From Figure 4 and Table S4, it is evident that for some of

the investigated systemswith the same counterion and
hydrophobic tailthe obtained values of ΔM,1cp

⊖ and ΔM,2cp
⊖

differ significantly from their theoretical value. On the other
hand, the ΔM,2cp

⊖ values for C2OMe, C2OC2OMe, and
C2OOEt are very close to ΔMcp

⊖(thnp), indicating that here
the alkyl chain could be almost fully dehydrated upon
micellization (in the second step). A possible reason for the
difference in the values of ΔM,1cp

⊖ and ΔM,2cp
⊖ for some systems

might be the increased or decreased hydration of the polar
head upon micellization. Additionally, functional groups could
be, and most likely are, oriented almost perpendicular to the
alkyl chains, and this could contribute to the lower values of n2
because of steric constraints.
For all studied surfactants, ΔM,1H

⊖ > ΔM,2H
⊖ and ΔM,1S

⊖ >
ΔM,2S

⊖ (Table S3). This suggests that for small micelles, the
packing of the nonpolar tails in the core is not optimum. Thus,
on insertion of further monomers, additional water molecules
are released and better packed larger micelles are obtained.
Compared to the reference (Me) and to the alcohol

surfactant, enthalpies as well as entropies are considerably
increased for C2OMe, C2OC2OMe, and C2OOEt. All three
have similar values for ΔM,1H

⊖ (∼13 kJ mol−1), ΔM,1S
⊖ (∼125

J K−1 mol−1), and ΔM,2S
⊖ (∼115 J K−1 mol−1). C2OMe and

C2OOEt have similar ΔM,2H
⊖ values (∼8 kJ mol−1), while

ΔM,2H
⊖ of C2OC2OMe (∼10 kJ mol−1) is the largest. The

larger enthalpies for the latter three compounds, as well as their
entropy values, suggest that for both small and large micelles,
either steric repulsion of the bulkier substituents becomes
important or that upon micellization the polar headgroup is
partly dehydrated. The thermodynamic data alone do not
inform which effect is dominating. Interestingly, there is no
significant difference in n1, n2, ΔM,1S

⊖, ΔM,2S
⊖, ΔM,1cp

⊖, and
ΔM,2cp

⊖, between C2OMe and C2OC2OMe, suggesting that the
“extra” ethoxy group does not significantly affect the shape of
micelles, besides decreasing the degree of counterion binding,
and only slightly increases ΔM,2H

⊖. On the other hand, in the
case of C2OH and C2OOEt, rather small micelles of similar
size (n2 ≈ 14) are formed, despite significantly different values
for all enthalpies, entropies, and heat capacities (Table S4).

This is discussed further in last part of the Results and
Discussion.

Dielectric Relaxation Spectroscopy. Assignment of
Modes. Typical spectra are shown in Figure 5 for the 0.2 M

solution of (C2OOEt)C10Me2N
+Cl− and in Figures S16−S20

of the Supporting Information for all studied systems at 0.04,
0.12, and 0.2 M as well as the spectra for the 0.7 M solutions of
C10Me3N

+Cl− and (C2OOEt)C10Me2N
+Cl−. Because of the

relatively complex synthesis and the rather large sample
volumes required for DRS, 0.7 M solutions could not be
recorded for the other surfactants. The obtained parameters
are summarized in Table S5 of the Supporting Information
together with the associated densities and electrical con-
ductivities determined in Regensburg as described elsewhere.22

For each of the studied concentrations, the spectra of all five
studied surfactant solutions were rather similar in their
appearance. Typical for aqueous solutions of ionic surfac-
tants,49 the dielectric loss, ε″(ν), exhibited a dominating peak
at ∼18 GHz (j = 4 for c < cmc; j = 5 otherwise) associated with
the solvent and because of the low surfactant concentrations,
two weak contributions around ∼0.05 GHz (j = 1) and ∼0.5
GHz (j = 2) were observed. For solutions of charged colloids,
including micelles, the latter relaxations are predicted by the
theory of Grosse50 and associated, respectively, with
fluctuations of the diffuse counterion cloud surrounding the
micelle (j = 1) and the surface hopping of condensed
counterions (j = 2). Because even nonassociating electrolytes,
such as aqueous NaCl, exhibit a weak ion-cloud relaxation
around 0.1 GHz,51 finding such a contribution for the present
surfactant systems already for the 0.04 M solutions, that is well
below the cmc, was expected. Assignment to ion-cloud
relaxation is supported by the observation that compared to
the reference compound, C10Me3N

+Cl−, attachment of a
functional moiety to the ammonium headgroup did not result
in a significant change in the relaxation time, τ1. Additionally,
the corresponding amplitude, S1, remains rather similar in the
concentration range between 0.04 and 0.2 M for all studied
systems (Table S5).
Moreover, the presence of a mode at ∼0.5 GHz already for c

< cmc could be expected. Baar et al. discussed the
simultaneous presence of octyltrimethylammonium bromide
ion pairs and micelles formed by this surfactant, both showing
a relaxation in the same frequency range.10 Alternatively to ion-
pair relaxation, it should be noted that for the present

Figure 5. Dielectric loss, ε″(ν), spectrum (●) of aqueous solutions of
0.2001 M (C2OOEt)C10Me2N

+Cl− at 298.15 K. The line shows the fit
with the 6D model; the shaded areas indicate the contributions of the
resolved modes j = 1, ..., 6.
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surfactant cations almost certainly their center of charge and
their center of mass do not coincide. The reorientation of the
resulting charge arm52 should also show up at similar
frequencies in the dielectric spectrum.
In addition to the cooperative relaxation of the H-bond

network of water at ∼18 GHz (parameters S5, τ5), the weak
mode (S6, τ6) at ∼500 GHz associated with fast H-bond
flipping26,53 could be unequivocally resolved. These two modes
highlight different aspects in the continuous chain of events,
leading to the reorientation of water dipoles. Thus, their
combined amplitudes, Sb = S5 + S6, characterize the
polarization associated with those H2O molecules in the
solution, which behave, more or less, like pure water. As shown
below, comparison of the DRS-detected concentration of
bulklike water, calculated from Sb, with the analytical H2O
concentration yields the total hydration number (number of
bound H2O molecules per equivalent of surfactant), Zt. It
turned out that in general these Zt bound water molecules can
be subdivided into two fractions. The first, of number Zib, is so
strongly bound that they completely disappear from the
covered dielectric spectrum (i.e., these dipoles are effectively
frozen on the DRS time scale). The second fraction is only
moderately retarded in their dynamics (retardation factor r =
τ3/τ4 for c < cmc, otherwise r = τ4/τ5) so that it shows up as a
separate “slow water” mode in the spectrum.54

Previous studies of tetraalkylammonium halide solutions55

and other small hydrophobic solutes54 identified the same slow
water mode at ∼10 GHz (relaxation times τ ≈ 15−30 ps).
Similar relaxation times were also observed for CxMe3N

+X−

surfactants,9,10,56 whereas for sodium dodecyl sulfate (SDS)
solutions, this mode showed up at ∼2 GHz (∼120 ps).57 For
all present spectra, a weak contribution between the slower
surfactant-specific relaxation (S2, τ2) and the cooperative water
mode (S5, τ5) is present. For c < cmc, the associated relaxation
time, τ4 in Table S5 and τ3 in Table S6, obtained with the 5D
model is in the range of 14−33 ps. However, for c > cmc, the
relaxation time jumped to values in the range of ∼50−150 ps
and scattered considerably, as did the corresponding amplitude
(Table S6). Therefore, fits for these solutions were repeated
assuming an additional contribution at ∼1 GHz (S3, τ3 in
Table S5). Despite the small values resulting from these 6D fits
for the amplitudes S3 and S4, rapid convergence was achieved
and the fit quality (in terms of χ2, see ref 25) even slightly
improved. On the basis of the data for SDS57 and
tetraalkylammonium halides,55 we tentatively assign the
mode associated with the thus obtained relaxation time of τ3
≈ 80−200 ps to retarded water molecules interacting with the
micelles and that with τ4 ≈ 14−40 ps to H2O hydrating free
monomers. However, note that water hydrating the hydro-
philic functional groups of some of the present surfactants may
have similar dynamics as a free monomer or in a micelle.58

Evaluation of the Relaxation Amplitudes. From the
amplitude of bulklike water, Sb = S5 + S6 (corrected for
kinetic depolarization with slip boundary conditions using the
approach of Sega et al.59), and those of the two slow water
modes, Ss′ = S3 and Ss″ = S4, the corresponding DRS-detected
solvent concentrations, cb and cs′, cs″, were calculated as
described elsewhere.26 Comparison of cb with the analytical
water concentration, cw, then yields the total effective hydration
number of the solute, Zt = (cw − cb)/c, that is, the number of
H2O molecules per equivalent of solute, which differ in their
dynamics from bulk water. The concentrations cs′ and cs″ define
the hydration numbers Zs′ = cs′/c and Zs″ = cs″/c of H2O

molecules retarded in their dynamics by the factors r′ = τ3/τ5
and r″ = τ4/τ5 because of moderate interactions with the solute
in the micelle or with the surfactant monomer. It is important
to note here that DRS detects hydration because of the
different dynamics of the involved H2O molecules compared to
the bulk. For the present surfactant systems, we were able to
detect three different kinds of hydration water, either “frozen”
(too slow to be detected in the covered frequency range, i.e., r
→ ∞) or retarded by r′ = τ3/τ5 or r″ = τ4/τ5. “Frozen”
hydration water can be readily associated with hydrophilic
hydration involving strongly attractive solute−solvent inter-
actions, such as ion-dipole forces. Additionally, r′ = τ3/τ5
values of 10, ..., 25 almost certainly reflect hydrophilic
hydration. However, the rather small retardation of mode 4,
r″ = τ4/τ5 ≈ 4, is almost certainly produced by both
hydrophilic and hydrophobic hydration,60 see the discussion
below.

Surfactant Monomer Hydration. For the 0.04 M solutions
Zs′ = 0 as no micelles are present and, within experimental
uncertainty, Zs″ ≈ Zt. This means that all Zt affected water
molecules, which are obviously hydrating the surfactant cations
because Zt(Cl

−) = Zs(Cl
−) = 0,61 are only weakly slowed down

by retardation factors of r″ ≈ 2.2−3.9, depending on the
surfactant cation. While the two ethers and the ester show
similar hydration numbers of Zs″ ≈ 16, ..., 20, this quantity
drops to ∼7 for C2OH but reaches ∼28 for the C10Me3N

+ ion
(Figure S21). In all cases, the obtained Zs″ values are
significantly smaller than the numbers, nh

0(S) (Table 2), of
H2O molecules that can nominally be accommodated in the
first hydration shell of the surfactant cation. Similar
observations were made for CxMe3N

+X−9 and Me4N
+X−.62

This may indicate that not all H2O molecules in the first
hydration shell are equally slowed down. However, without
reliable first-shell coordination numbers from simulations or
scattering experiments to compare, one cannot exclude that the
nh
0(S) values are systematically too large. Unfortunately,
experimental hydration numbers for the unsubstituted
C10Me3N

+ are scarce and completely lacking for the other
surfactants of this study. From the hydrodynamic radius of
C10Me3N

+, a hydration number of ∼23 was estimated,9 which
is in fair agreement with Zs″ = 28 for this cation. Also, the DRS
value of Zs″ ≈ 20 for the shorter C8Me3N

+ cation9 fits in. The
monomer data of Figure S21, thus, indicate that a hydrophilic
substituent, close to the charge center of the cation, partly
compensates the hydrophobic slow down exerted by the
methyl groups, possibly by acting as catalytic centers for
solvent H-bond switching.63

Micelle Hydration. It is reasonable to assume that for c >
cmc, where the solutions contain a mixture of monomers and
micelles, the resolved (S4, τ4) mode is also due to H2O
molecules interacting with the monomers. This suggests that
the additional (S3, τ3) mode found for these solutions and thus
the corresponding hydration number Zs′ can be assigned to the
solvent interacting simultaneously with the charged surface of
the micelles and counterions condensed thereon.49 With r′ ≈
10, ..., 25 for c ≈ 0.12 and 0.2 M, the latter water molecules are
considerably stronger bound than those hydrating surfactant
monomers. This view is supported by the molecular dynamics
(MD) simulations of Pal et al.60 For a ∼0.4 M aqueous
C10Me3N

+Br− solution, they found a relaxation time of 164 ps
for water molecules in the interfacial layer of Me micelles. This
value is in good agreement with the present τ3 values of 159 ps
at 0.12 M and 133 ps at 0.2 M for C10Me3N

+Cl− (Table S5).
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Interestingly, for the investigated ∼0.7 M solutions of
C10Me3N

+Cl and C2OOEt, where ∼93−97% of the surfactant
are bound in micelles, r′ decreases to ∼4 (because of lacking
material, such measurements were not possible for the other
surfactants). This may be a reflection of micelle−micelle
interactions and, together with the limited experimental
resolution then available, explain why for the CxMe3N

+X−

surfactants studied by Baar et al.9,10 only slow water relaxation
times of ∼30 ps were found.
From the amplitudes Sb, S3, and S4 of the micelle-containing

0.12, 0.2, and 0.7 M solutions, Zt, Zs′, and Zs″ values were
calculated as described above (Figure S21). Compared to the
0.04 M samples containing only monomers, Zt and Zs″
decreased considerably. However, these data, as well as Zs′,
are of limited help, as they were obtained by normalizing the
corresponding water concentrations, cb, cs′, and cs″, to the total
surfactant concentration. What is of interest are the
corresponding numbers for the free cations, Zs

S, and those
bound in micelles, Zs

M, which are related by the equation

Z Z Z Z(1 )s s s
M

s
Sα α′ + ″ = + − (13)

For the total hydration number, Zt, a similar relation holds.
Thus, inserting the data for the micelle-free 0.04 M solutions as
values for Zs

S and the mole fractions, α, of surfactant ions
bound in micelles, obtained from the ITC measurements,
yields the hydration numbers Zs

M of slow (retarded, r′ = τ3/τ5)
H2O molecules per micelle-bound surfactant cation. Alter-
natively, the corresponding total number of bound water, Zt

M,
was calculated from the bulk-water amplitude.
However, only Zs′ was taken into account in the calculation

of Zt
M. Thus, the data summarized in Table 3 have to be taken

with a grain of salt. Because both slow water amplitudes are
squeezed between the much larger micelle and bulk-water
relaxations, their amplitudes S3 and S4 scatter considerably. As
a side effect, in some cases, their sum is overestimated in the
fit, whereas Sb is too small, that is, cs′ + cs″ > cw − cb, which is
unphysical. Also, the uncertainty of the free monomer values is
very large (±5, assuming an uncertainty of ±0.3 for all
amplitudes of Table S5). Consequently, we abstain from a
discussion of Zt

M and in particular of the number water
molecules possibly “frozen” on the micelle surface, Zib

M = Zt
M −

Zs
M. Despite these problems, a look at the obtained hydration

numbers Zs
M (Table 3) is nevertheless worthwhile. Except for

0.2 M solutions of C2OH and C2OC2OMe, all obtained Zs
M

values are significantly smaller than the corresponding data for
the free cations, Zs

S. This result, pointing at surfactant
dehydration on insertion into the micelle, seems reasonable
as the micelle-embedded cations expose less hydrophobic
surface to water.
For the unsubstituted compound (C10Me3N

+Cl−), Zs
M drops

significantly from ∼17 at c = 0.12 M to ∼9 at 0.2 M and to ∼3
at c = 0.7 M, but the value for 0.2 M compares well to previous
results for C8Me3N

+Br− (9.5), C12Me3N
+Br− (11.4), and

C12Me3N
+Cl− (14.2) at the same c.9 Note that Pal et al.60

obtained in their MD simulations for c = 0.4 M a coordination
number of 25 H2O molecules for the trimethylammonium
groups of C10Me3N

+ ions in micelles. This suggests that not all
water molecules surrounding the headgroup are affected in
their dynamics. On the other hand, at least for the 0.7 M
solution of Me, the obtained Zt

M value is fairly reliable and
significantly larger than Zs

M. Therefore, we may conclude that
with the increasing concentration of C10Me3N

+Cl−, only a part
of the slow water hydrating the monomer of the surfactant is
released to the bulk while the remaining Zt

M − Zs
M ≈ 6 H2O

molecules per equivalent of surfactant in the micelle effectively
“freeze”. Even more, for other CxMe3N

+X− surfactants, values
of Zs

M ≈ 12 ± 4 were also found at 0.2 M. Thus, it appears that
for tetraalkylammonium surfactants, the hydration number Zs

M

is rather independent of the counterion or the alkyl chain
length and is only slightly influenced by the functionalization
of the headgroup. On the other hand, ΔMcp

⊖, which is ascribed
to the dehydration of the nonpolar surfactant tails upon micelle
formation, differs significantly among the different surfactants.
Because there is obviously no correlation between ΔMcp

⊖ and
Zs
M, we may conclude that the slowed down water is primarily

hydrating the head group.
In contrast to the unsubstituted compound, the alcohol and

the ethers showed that the number of retarded H2O molecules
significantly increases when going from 0.12 to 0.2 M. This
might reflect increasing H-bond cooperativity for these
substituents with increasing micelle size (Figure S15).
Apparently, this is not the case for the ester as here Zs

M

remains constant at low level (∼5).
Estimation of Bare and Hydrated Micelle Volumes.

Combining the results from the density measurements, ITC
and DRS allow estimating the size of the micelles. From the
apparent molar volume of the surfactant in the micelle, Vϕ

M

(Table 2), corrected for Cl− ions (17.83 cm3 mol−1 at 298.15

Table 3. Total DRS Hydration Numbers, Zt, and Corresponding Numbers Zs′, Zs″ of Moderately Bound (Slow) Water
Molecules per Equivalent of Solute Obtained from the Amplitudes S3 and S4; Fraction, α, of Surfactant Cations Bound in
Micelles and Corresponding Hydration Numbers of Slow Water, Zs

M, and Total Water, Zt
M, of Micelle-Bound Cationsa

X Zs
S c Zs′ Zs″ Zt α Zs

M Zt
M

Me 27.9 0.1186 14 12 16 0.20 17 17
0.1978 11 6.5 13 0.55 9.4 12
0.6990 3.8 0.8 9.8 0.93 2.9 9.3

C2OH 7.0 0.1195 5.3 0.4 5.2 0.30 2.4 2.4
0.1981 7.8 2.6 8.6 0.60 13 14

C2OMe 20.0 0.1196 12 1.9 6.5 0.37 2.4 2.4
0.1994 7.2 6.2 13 0.66 9.9 19

C2OC2OMe 15.8 0.1196 9.2 3.6 9.2 0.44 8.9 8.9
0.1963 10 6.8 12 0.70 17 20

C2OOEt 16.3 0.1196 7.9 1.7 7.6 0.58 4.8 4.8
0.2001 4.6 4.1 10 0.75 6.1 14
0.6979 3.7 0.7 10 0.97 4.0 11

aUncertainty: Zs
S: ±5, Zs′, Zs″, Zt: ±3, α: ±0.05.
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K),64 and the average aggregation number, navg (Figure 3), the
volume of the “bare” micelle, VM, can be obtained as

V n V V N( (1 ) (Cl ))/M
avg

M
Aβ= − −ϕ ϕ

−
(14)

The volume of the hydrated micelle, Vhyd
M , is then given by

V V n Z V N(H O)/hyd
M M

avg s
M

m 2 A= + (15)

where Vm(H2O) is the molar volume of water, 18.069 cm3

mol−1, at 298.15 K. Assuming spherical micelles, the radii of
bare, rM, and hydrated micelles, rhyd

M , gathered in Table 4 were
obtained.

Note that the actual radius of a micelle depends first on the
definition of the “border” between the micelle and the bulk and
second the extent to which the hydrated water is present inside
the defined sphere is unknown. Therefore, the values of rM and
rhyd
M estimated here are only two possible interpretations of VM

and Vhyd
M . Nevertheless, the bare micelle radius as estimated for

the 0.2 M solution of C10Me3N
+Cl− (rM = 1.24 nm) is in

excellent agreement with a recent MD simulation, yielding rM

= 1.230 nm with an all-atom description of the surfactant
cation and 1.311 nm for a united-atom model.65 Neutron
scattering experiments on C10Me3N

+Br− solutions yielded
∼1.0 nm for the radius of the hydrophobic core of the micelles
plus 0.75 nm for the headgroups and their effective hydration
shells.1 Thus, the resulting radius for the hydrated micelle, 1.75
nm, is also comparable with the present value of rhyd

M = 1.48
nm. This suggests that our ITC determination of navg is
realistic.
For each of the 0.12 and 0.2 M solutions of C2OMe and

C2OC2OMe, the rM and rhyd
M values of both surfactants are

similar (Table 4). Apparently, the effect of the slightly smaller
average aggregation number, navg (Figure S15), of C2OC2OMe
is canceled by the larger hydration number, Zs

M (Table 3), and
the molar volume of this surfactant so that similar values for
the thermodynamic parameters of micellization are obtained
for both compounds (Table S3). In other words, the slightly
smaller navg of C2OC2OMe compared to that of C2OMe can be
ascribed to the larger size of monomers and possibly steric

constraints at micelle formation, resulting in similar values of
VM. In addition, comparable values of Vhyd

M indicate that
approximately the same amount of slowed down water per
micelle is present for both compounds.

Thermodynamic Parameters in View of the Change
of Hydration upon Micellization. The thermodynamic
parameters determined by ITC with the two-step micellization
model represent the difference between micelles and surfactant
monomers in solution. Thus, they should not be compared to
the hydration numbers obtained for the micelles, Zs

M, but to
the difference in hydration between micelles and monomers,
Zs
M − Zs

S (Figure 6). Because Zs
M − Zs

S was determined at 0.2 M
(and 298.15 K), the parameters for the second step in the two-
step micellization model are relevant.
Let us first note that already the difference, Zs

M − Zs
S, reveals

an interesting order: Me < C2OOEt ≈ C2OMe < 0 <
C2OC2OMe < C2OH. Thus, as one would expect, in the case

Table 4. Degree of Counterion Binding, β, Average
Aggregation Number, navg, Volumes of the Bare Micelle, VM,
and Hydrated Micelle, Vhyd

M , and Corresponding Micelle
Radii, rM and rhyd

M , for Aqueous Solutions of Concentrations,
c, of XC10Me2N

+Cl− Surfactants at 298.15 K (X = Me,
C2OH, C2OMe, C2OC2OMe, and C2OOEt)a,b

X β c navg VM Vhyd
M rM rhyd

M

Me 0.40 0.1186 16 6.3 14.5 1.15 1.51
0.1978 20 7.9 13.6 1.24 1.48
0.6990 22.2 8.8 10.7 1.28 1.37

C2OH 0.68 0.1195 11 4.8 5.6 1.05 1.10
0.1981 12 5.3 9.8 1.08 1.33

C2OMe 0.72 0.1196 16 7.5 8.7 1.22 1.28
0.1994 17.5 8.3 13.4 1.25 1.48

C2OC2OMe 0.61 0.1196 13.5 7.2 10.8 1.20 1.37
0.1963 15 8.0 15.9 1.24 1.56

C2OOEt 0.67 0.1196 12 6.1 7.8 1.13 1.23
0.2001 12.5 6.3 8.6 1.15 1.27
0.6979 13.2 6.7 8.2 1.17 1.25

aUnits: c in mol L−1; Vϕ
M in cm3 mol−1; VM, Vhyd

M in nm3; rM, rhyd
M in

nm. bUncertainty: navg: ±2; VM, Vhyd
M : ±1; rM, rhydM : ±0.1.

Figure 6. (a) Enthalpy, ΔM,2H
⊖, at 298.15 K, (b) entropy, ΔM,2S

⊖, at
298.15 K, and (c) heat capacity of micellization, ΔM,2cp

⊖, of the second
steps in the two-step micellization model for the investigated
surfactants (XC10Me2N

+Cl−, where X represents Me, C2OH,
C2OMe, C2OC2OMe, and C2OOEt functional groups) as a function
of the difference between the hydration numbers of surfactant ions in
micelles and as monomers, Zs

M − Zs
S, as estimated here for 0.2 M

aqueous solutions.
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of the reference compound, the ester and the ether, the
surfactant ion is more hydrated when it is free than when it is
inserted in the micelle. However, with increasing polarity of
the head group, the hydration of the inserted surfactant ion
does not significantly change, whereas the hydration of the free
monomer of the surfactant decreases (Table 3). It is possible
that for the diether, the situation is inverted and certainly so
for the alcohol.
The dehydration of the hydrophobic tail is an endothermic

effect, and the release of water from the hydration shell of the
hydrophobic tail to the bulk results in a positive entropy
change. For the reference system, C10Me3N

+Cl−, the average
aggregation numbers increase with raising concentration
(Table 4, Figure S15), whereas micelle hydration is decreased
(Table 3). This is in excellent agreement with the known
properties of almost all water solutions of ionic solutes and a
good indication that our experiments are correct and
consistent. Unfortunately, hydration numbers for most of the
other studied systems for the 0.12 M solutions are at the limit
of determination and probably underestimated, so we further
discuss only the 0.2 M solutions.
Dehydration is an endothermic process. Thus, the more the

H2O molecules are removed from contact with the surfactant
ion upon its insertion into the micelle, the larger, that is more
positive, the ΔM,2H

⊖ should be. However, with the exception
of C2OH, Figure 6a shows the opposite. This suggests that the
dehydration of the alkyl chain cannot be the main reason for
the observed differences in enthalpy change among studied
surfactants. As discussed before, except for ΔM,2H

⊖, C2OMe,
C2OC2OMe, and C2OOEt exhibit comparable values for their
corresponding thermodynamic parameters of micellization.
Furthermore, C2OMe and C2OC2OMe have the same micelle
size and a comparable amount of retarded water. Therefore,
the observed enthalpy increase with increasing Zs

M − Zs
S

(Figure 6a) most likely reflects an increasing repulsion
between headgroups because of their increasing size, that is,
increasing the headgroup size increases steric constraints upon
micelle formation. This is supported by the decreasing
aggregation number in comparison to Me. The only exception
is C2OH where the enthalpy change is even smaller than for
Me. Because among the studied systems, the hydroxyl moiety
of C2OH can form the strongest H-bonds with water, effects of
possible steric constraints to ΔM,2H

⊖ are clearly over-
compensated by increased hydration upon micellization.
The main driving force for the formation of micelles should

be the apparent disaffinity of water and the nonpolar
(interacting) surfaces known as hydrophobic effect. The
thermodynamic parameter which illustrates this effect is the
heat capacity of micellization, ΔMcp

⊖, which is highly negative
(Table S4 and Figures 4 and 6c), and should be ascribed to the
removal of water molecules from contact with the nonpolar
surface area upon micelle formation.39

An inspection of Table 3 reveals clearly that the hydration of
monomers of the investigated surfactants is very different and
this must also influence the observed differences in ΔMcp

⊖. The
hydration of micelles is very similar among studied surfactants,
except for C2OOEt where less retarded water was determined
(approximately half). The experimental value of ΔM,2cp

⊖ for
C10Me3N

+Cl− is −387 J·mol−1·K−1, thus from the difference
with ΔMcp

⊖(thnp) it can be assumed that the theoretical
estimate for ΔAnp is too large and that the hydrophobic tail is
still in contact with some water molecules after micellization. A
similar argument could be made for C2OH (−430 J·mol−1·

K−1); however, the difference is smaller and could also be due
to changes in the hydrophilic headgroup hydration, ΔAp,
especially because the monomers are poorly hydrated (Zs

S = 7)
and surfactant cations in micelles are more hydrated in
comparison.
It is known that mixtures of water and alcohol (to which

(C2OH)C10Me2N
+Cl− systematically belongs) exhibit a

particularly strange behavior: while methanol and ethanol are
macroscopically miscible with water, their mixtures exhibit
negative excess entropies of mixing. The dissolution of small
amounts of l-propanol in water leads to an evolution of heat,
but the contrary is observed when small amounts of water are
dissolved in this alcohol. The solubility of butanol in water is
limited to a few per cent, above which there exists a gap of
miscibility. Nevertheless, this dissolution remains remarkably
exothermic. In contrast, the dissolution of small amounts of
water in butanol absorbs heat from the surroundings.66

Different models for the structure of these mixtures have
been proposed to address this behavior. These include an
enhancement of the water hydrogen-bond network around the
hydrophobic group of the alcohol or microscopic immiscibility
because of clustering. Recently, mixtures of methanol, ethanol,
and isopropanol with water were investigated by liquid
microjet X-ray absorption spectroscopy on the oxygen K-
edge, providing details of both the inter- and intramolecular
structure. A significant enhancement of hydrogen bonding
upon water addition was found, originating from the methanol
and ethanol hydroxyl groups. These additional H-bond
interactions strengthen liquid−liquid interactions, resulting in
additional structural ordering and thus leading to a reduction
in entropy and a negative enthalpy of mixing, consistent with
existing thermodynamic data. In contrast, the spectra of the
isopropanol−water mixtures exhibit an increase in the number
of broken alcohol H-bonds for mixtures containing up to 0.5
mol fraction of water, an observation consistent with the
existing enthalpy of mixing data, suggesting that the measured
negative excess entropy is a result of clustering or micro-
immiscibility.67

Thus, for (C2OH)C10Me2N
+Cl−, similar interactions with

water can be assumed as for 1-butanol. The −OH group of the
free monomers initiates additional ordering of the surrounding
water molecules by building H-bonds, leading to a reduction in
entropy and enthalpy of the solution. Upon micellization, the
surface of the micelle is more similar to the opposite situation
of a concentrated alcohol solution in water. Thus, some of the
additional H-bonds of monomers with water are broken and
the reduced entropy and enthalpy have to be compensated.
The initial increase of density below cmc (Figure S11)
supports the proposed additional ordering of the solution of
monomers and gradual breaking of this increased order upon
micelle formation is accompanied with the decrease of density
above cmc. Thus, increased ordering because of the monomers
could explain the increased entropy of micellization compared
to Me. Nevertheless, enthalpy of micellization is still lower
compared to Me, most likely because of an increased hydration
of the headgroup. The contribution of the increased hydration
must be greater than the contribution of the increased steric
constraints and breaking of the H-bonds. The higher value of
slowed down water molecules (Zs

M − Zs
S = 6) reflects this

extensive additional hydration of the micelle surface, especially
because ΔM,2cp

⊖ indicates that the nonpolar alkyl chain is
almost fully dehydrated. Thus, for C2OH, the hydration of the
polar head upon micellization is by far the strongest among all
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studied surfactants. Nevertheless, ΔM,2cp
⊖ for C2OH is the

largest among functionalized systems, thus the lowest value of
n2 could be due to space required for water molecules in the
cavities between alkyl chains together with increased space
required around the polar head.
While the −OH group can act as a donor and an acceptor of

H-bonds, ether and ester groups can only accept H-bonds from
water molecules. Nevertheless, a similar initial increase and
subsequent decrease of density with concentration as for
C2OH were measured for these three surfactants. This
indicates that for these surfactants additional ordering of the
water solution also occurs upon the addition of monomers.
Thus, increased enthalpy and entropy upon micellization
(Figure 6a,b) for C2OMe, C2OC2OMe, and C2OOEt could
also be due to the breaking of the weak H-bonds between free
monomers and water. However, if this was the only
contribution, the largest values of ΔM,2S

⊖ would be expected
for C2OH because of the strongest H-bonding.
Values of ΔM,2cp

⊖ for ethers (C2OMe and C2OC2OMe) are
closer to the theoretical value of ΔMcp

⊖(thnp), whereas for ester
(C2OOEt) the value of ΔM,2cp

⊖ is even more negative but
within the uncertainty range. Therefore, in the same way as for
C2OH, the contribution of increased hydration of the
headgroup upon micellization should probably be taken into
account in eq 12. It can be assumed that upon micellization,
most of the water molecules hydrating the surface of the
surfactant ion are “relocated” from the alkyl chain to the
surface of the micelle (Zs

M − Zs
S ≈ 0, ΔM,2cp

⊖ ≈ ΔMcp
⊖(thnp)) for

C2OC2OMe, whereas for C2OMe and C2OOEt, some water is
additionally released to the bulk. The opposite is true for
C2OH, where upon micellization additional water from the
bulk is required (Zs

M − Zs
S > 0). This probably reduces ΔM,2S

⊖

compared to the large value expected for this surfactant
because of strong H-bonding.

■ CONCLUSIONS
Decyldimethylammonium chlorides, XC10Me2N

+Cl−, with a
polar functional group, X = C2OH, C2OMe, C2OC2OMe,
C2OOEt (Scheme 1), and decyltrimethylammonium chloride,
C10Me3N

+Cl−, as a “reference” compound were synthesized
and their thermal properties were determined, followed by an
extensive study of their aqueous solutions.
The determined melting points and decomposition temper-

atures revealed that the functionalized surfactants had melting
points below 200 °C. The ester C2OOEt, with a melting point
below 100 °C, can be even classified as an ionic liquid.
Exchanging the relatively small chloride anion with a bulkier
counterion would probably lower the melting points below
room temperature.
The micellization process in an aqueous solution was

investigated by density measurements, ITC, and dielectric
spectroscopy. The thermodynamics of the micellization was
studied by applying a two-step micellization model to the
experimental ITC data. In addition to the thermodynamic
parameters, the degree of counterion binding and the
aggregation numbers for both steps were obtained. The
substitution of one of the methyl groups by a polar functional
group yielded micelles with lower aggregation numbers for the
second step, which better describes concentrations above c ≈ 2
times the cmc, whereas the aggregation number for the first
step (smaller aggregates), which better describes the aggregates
formed at cmc, is similar for all studied systems. The
interpretation of the dielectric spectra with the appropriate

model provided effective hydration numbers of free monomers,
Zs
S, and micelles, Zs

M. Interestingly and counterintuitively, less
water molecules are slowed down in their dynamics by the free
cations bearing hydrophilic substituents compared to the
mainly hydrophobic C10Me3N

+, indicating that water dynamics
close to the hydrophilic moieties are similar to the bulk.
According to the sequence C2OH < C2OC2OMe ≈ C2OOEt <
C2OMe < Me for Zs

S, the OH group, acting as both H-bond
donor and acceptor, is most efficient in breaking the (probably
clathrate-like) hydration shell of the hydrophobic surfactant
tail. The compounds with two oxygen atoms as H-bond
acceptors follow this pattern, whereas the monoether is the
least efficient. This is in line with the Laage−Hynes model of
hydration water dynamics.63 In contrast to the differences
among the hydration of free monomers, upon micellization,
approximately 12 ± 4 water molecules per headgroup are
slowed down at the micelle surface for almost all studied
surfactants. Except for C2OOEt, where only approximately half
this value was determined. This is in agreement with reported
values for most single long-chain quaternary ammonium
halides. Unfortunately, the obtained hydration numbers for
the surfactant in the micelle, Zs

M, are too widely scattered for a
quantitative discussion.
The obtained thermodynamic parameters reflect the differ-

ence between free monomers and micelles, allowing a
comparison to the difference in hydration numbers, Zs

M −
Zs
S. This revealed a complex balance between the steric

constraints, H-bonding and the hydrophobic effect, which
requires further studies.
Conversely, the estimated sizes of micelles and their radii,

obtained by combining density measurements with ITC and
DRS experimental data, are comparable for surfactants
functionalized with a polar residue.
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Marija Besťer-Rogac:̌ 0000-0003-4284-5987
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Slovenian Research Agency
through grant no. P1-0201. Ž.M. is grateful to Slovenian
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