190 research outputs found
The Mechanism of Sertoli-Germ Cell Interaction a
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73914/1/j.1749-6632.1987.tb25056.x.pd
Manacled to Identity: Cosmopolitanism, Class, and ‘The Culture Concept’ in Stephen Crane
This article begins with a close reading of Stephen Crane’s short story ‘Manacled’ from 1900, which situates this rarely considered short work within the context of contemporary debates about realism. I then proceed to argue that many of the debates raised by the tale have an afterlife in our own era of American literary studies, which has frequently focused on questions of ‘identity’ and ‘culture’ in its reading of realism and naturalism to the exclusion of the importance of cosmopolitan discourses of diffusion and exchange across national borders. I then offer a brief reading of Crane’s novel George’s Mother, which follows Walter Benn Michaels in suggesting that the recent critical attention paid to particularities of cultural difference in American studies have come to conflate ideas of class and social position with ideas of culture in ways that have ultimately obscured the presence of genuine historical inequalities in US society. In order to challenge this critical commonplace, I situate Crane’s work within a history of transatlantic cosmopolitanism associated with the ideas of Franz Boas and Matthew Arnold to demonstrate the ways in which Crane’s narratives sought out an experience of the universal within their treatments of the particular
Cell-based Approaches to Joint Surface Repair : A Research Perspective
The authors are grateful for support to their research from Arthritis Research UK (grants 19271, 19429, 19667, 20050). None of the authors received any funding related to the writing of this manuscript, and the funding bodies did not play any role in the writing of the manuscript or decision to submit the manuscript for publication.Peer reviewedPublisher PD
Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit
We show that for any Hilbert-space dimension, the optimal universal quantum
cloner can be constructed from essentially the same quantum circuit, i.e., we
find a universal design for universal cloners. In the case of infinite
dimensions (which includes continuous variable quantum systems) the universal
cloner reduces to an essentially classical device. More generally, we construct
a universal quantum circuit for distributing qudits in any dimension which acts
covariantly under generalized displacements and momentum kicks. The behavior of
this covariant distributor is controlled by its initial state. We show that
suitable choices for this initial state yield both universal cloners and
optimized cloners for limited alphabets of states whose states are related by
generalized phase-space displacements.Comment: 10 revtex pages, no figure
In vitro chondrogenic commitment of human Wharton's jelly stem cells by co-culture with human articular chondrocytes.
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.European Union-funded Network of Excellence’EXPERTISSUES’(Grant No. NMP3-CT-2004-500283)
Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity
In recent years, there has been accumulating evidence that microRNAs are key regulator molecules of gene expression. The cellular processes that are regulated by microRNAs include e.g. cell proliferation, programmed cell death and cell differentiation. Adipocyte differentiation is a highly regulated cellular process for which several important regulating factors have been discovered, but still not all are known to fully understand the underlying mechanisms. In the present study, we analyzed the expression of 597 microRNAs during the differentiation of mouse mesenchymal stem cells into terminally differentiated adipocytes by real-time RT-PCR. In total, 66 miRNAs were differentially expressed in mesenchymal stem cell-derived adipocytes compared to the undifferentiated progenitor cells. To further study the regulation of these 66 miRNAs in white adipose tissue in vivo and their dependence on PPARγ activity, mouse models of genetically or diet induced obesity as well as a mouse line expressing a dominant negative PPARγ mutant were employed
Perceptual Artifacts and Phenomena: Gibson's Role in the 20th Century
One of lit " JJl<>:>l i"flu"ntial f,dU'l""'od,,, for lite "tudy of pe'''''p-lion has been James J. Gibson's ecological approach. This approach is noi a theory, but a melatheory, of ho..... we perceive and under-stand the \\TOrld around us through our senses. As a melalhoory it dissolves old problems and creatl'S new ones, fostering neW ways 10 think about perception and creating 00..... antinomies 10 ponder. This essay outlines the successes of the approach, SOme of its ne..... problems, and traces so:ne of its more and less fruilfulleads. The ancient problem of.pace perception became my burden. It was worrisome, for, as [ gradually came 10 realize, nothing of any practical value was known by psychologists aboulthe perception of motion, or of locomotion in ~pau " or of spact ' itself (Gibson, 1967, p. 133). Z31 With this autobiographical sta tement James J. Gibson described the Lunu",lrum th " t faLw him IIlOl'e tha " 25 years earlier, in 1941, while se-rv
Principles of cartilage tissue engineering in TMJ reconstruction
Diseases and defects of the temporomandibular joint (TMJ), compromising the cartilaginous layer of the condyle, impose a significant treatment challenge. Different regeneration approaches, especially surgical interventions at the TMJ's cartilage surface, are established treatment methods in maxillofacial surgery but fail to induce a regeneration ad integrum. Cartilage tissue engineering, in contrast, is a newly introduced treatment option in cartilage reconstruction strategies aimed to heal cartilaginous defects. Because cartilage has a limited capacity for intrinsic repair, and even minor lesions or injuries may lead to progressive damage, biological oriented approaches have gained special interest in cartilage therapy. Cell based cartilage regeneration is suggested to improve cartilage repair or reconstruction therapies. Autologous cell implantation, for example, is the first step as a clinically used cell based regeneration option. More advanced or complex therapeutical options (extracorporeal cartilage engineering, genetic engineering, both under evaluation in pre-clinical investigations) have not reached the level of clinical trials but may be approached in the near future. In order to understand cartilage tissue engineering as a new treatment option, an overview of the biological, engineering, and clinical challenges as well as the inherent constraints of the different treatment modalities are given in this paper
- …