11 research outputs found

    Precise Measurement of the Neutrino Mixing Parameter theta(23) from Muon Neutrino Disappearance in an Off-Axis Beam

    Get PDF
    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) x 10^{-3} eV^2/c^4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty

    Search for electron antineutrino appearance in a long-baseline muon antineutrino beam

    Get PDF
    Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions

    Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production

    No full text

    Neutrino oscillation physics potential of the T2K experiment

    No full text

    Publisher's Note: T2K neutrino flux prediction

    No full text

    Precise measurement of the neutrino mixing parameter Ξ23 from muon neutrino disappearance in an off-axis beam.

    Get PDF
    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter Ξ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10(20) protons on target, T2K has fit the energy-dependent ΜΌ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(Ξ23) is 0.514(-0.056)(+0.055) (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm32(2)=(2.51±0.10)×10(-3)  eV(2)/c(4) (inverted hierarchy: Δm13(2)=(2.48±0.10)×10(-3)  eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty

    Search for Lorentz and violation using sidereal time dependence of neutrino flavor transitions over a short baseline

    No full text
    A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 1020 at the GeV scale

    First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector

    No full text
    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ∌0.8 GeV. The differential measurements are presented as a function of the muon and pion kinematics, in the restricted phase space defined by pπ+>200 MeV/c, pÎŒ>200 MeV/c, cos(Ξπ+)>0.3 and cos(ΞΌ)>0.3. The total flux integrated ΜΌ charged current single positive pion production cross section on water in the restricted phase space is measured to be

    Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280

    No full text

    First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K

    Get PDF
    This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8 × 10 20 and 6.3 × 10 20 protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference, and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects
    corecore