9 research outputs found
Detection of Ethylene Gas by Fluorescence Turn-On of a Conjugated Polymer
Ripe fruits: The fluorescence of a conjugated polymer is quenched by the presence of copper(I) moieties. Upon exposure to ethylene gas the copper complexes bind to ethylene and no longer quench the polymer fluorescence (see picture). This sensory concept can be used in solution and in thin films.German Academy of Sciences Leopoldina (Fellowship LPDS 2009-8)National Science Foundation (U.S.
Highly sensitive and selective ethylene gas sensors based on CeOx-SnO2 nanocomposites prepared by a Co-precipitation method
Some physico-chemical properties and catalytic activity of sulfate ion supported on WO 3 /SnO 2 catalyst
Ethylene control in cut flowers: Classical and innovative approaches
Ethylene-mediated premature floral senescence and petal or flower abscission affect postharvest longevity of several species used as cut flowers. Exposure to exogenous or endogenously produced ethylene can be controlled in several ways. These include the use of ethylene biosynthesis inhibitors or ethylene action inhibitors, and ethylene removal technologies. In addition, genetic modification can be very effective in controlling ethylene synthesis and perception. We review here the potential for applications of nanotechnology to control ethylene levels and postharvest management in the flower industry. Already, nanosponges have been shown to enhance efficacy of the ethylene inhibitor 1-MCP in several flower species. In carnation, 1-MCP included in nanosponges also allowed better control of Botrytis cinerea damage. However other applications are also considered based on successes in the use of this technology to increase agricultural production and decrease postharvest waste. Nano-metal based sensors could be used for detection of ethylene in the store and to label the product along the distribution chain. Furthermore, nanocomposites could be included as scavengers for ethylene removal in active packaging, and nanocatalysts could promote ethylene catalytic degradation in the warehouse. Nanoparticles could also be introduced into a new generation of packaging to control effects of gases and UV, and increase strength, quality and packaging appearance. This review highlights recent results on the use of nanotechnology sensu lato and potential application for cut flower vase life improvement, focusing on ethylene control strategies
